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Supplementary Figures and Tables.
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Supplementary Figure 1 | KUUST-1. a, SEM images of HKUST-1. XRD patterns (b), N2 sorption

isotherms (c¢), and pore size distribution profiles (d) of HKUST-1 before and after soaking in liquified

FM.
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Supplementary Figure 2 | MOF-808. a, SEM images of MOF-808. XRD patterns (b), N2 sorption

isotherms (c¢), and pore size distribution profiles (d) of MOF-808 before and after soaking in liquified

FM.
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Supplementary Figure 3 | UiO-67. a, SEM images of UiO-67. XRD patterns (b), N> sorption

isotherms (¢), and pore size distribution profiles (d) of UiO-67 before and after soaking in liquified

FM.
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Supplementary Figure 4 | UiO-66. a, SEM images of UiO-66. XRD patterns (b), N> sorption

isotherms (¢), and pore size distribution profiles (d) of UiO-66 before and after soaked in liquified FM.
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Supplementary Figure 5 | Illustration of the fabrication process of free-standing membranes. a,

MOF powders-based MMMs. b, 2D GO@Ui0O-66-based MPMs.



Supplementary Figure 6 | Photos of MMMs (Diameter: 3/8 inch; thickness: ~ 100 pm). MMMs

with various MOFs: (a) HKUST-1, (b) MOF-808, (¢) UiO-67, and (d) UiO-66.



Supplementary Figure 7 | SEM images of MMMs. MMMs (Diameter: 3/8 inch; thickness: ~ 100

-66.

or (d) UiO

b

um) with various MOFs: (a) HKUST-1, (b) MOF-808, (¢) UiO-67
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Supplementary Figure 8 | Ionic conductivity of FM-based electrolytes with various MMMs or
Celgard membrane. Ionic conductivity of 0.3 M THF + 0.3 M LiTFSI in FM measured with various
MMMs and commercial Celgard membrane at different temperatures, where two symmetric stainless-

steel current collectors were set constantly at 500 pm for all of the measurements.



Supplementary Figure 9 | Photographs of MPM bending and recovery.
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Supplementary Figure 10 | SEM images of 3D UiO-66 particle-based MMMs after soaking into

0.3 M LiTFSI in FM (room temperature, vapor pressure).
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Supplementary Figure 11 | SEM images of 2D GO@UiO-66-based MPM after soaking into 0.3

M LiTFSI in FM (room temperature, vapor pressure).
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Supplementary Figure 12 | Raman spectra of pure FM and 0.3 M LiTFSI in FM.
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Supplementary Figure 13 | Mass change tests of liquified FM soaked UiO-66 and its analogues.
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Supplementary Table 1 | Simulation parameters applied in MD/GCMC computations.

The pair interaction parameters and intramolecular parameters of UiO-66 were taken from published
works."* FM molecule structure was optimized to obtain intermolecular/intramolecular parameters
based on QM calculations at the MP2/aug-cc-pVTZ level of theory, with the partial atom charges taken
from a published work.? CO, and CH4 were described by the TraPPE-EH and TraPPE-UA forcefields

respectively.*

Materials Types Equations Parameters
C 0=3.304; £=0.0980; M =12.01
Pair
Lennard-Jones H o0=2.385;=0.0456; M =1.01
interaction
F 0=2.671;e=0.1165; M= 19.00
Rigid: ro=1.389
C-F
Rigid (GCMC) Harmonic: o= 1.389; K =368
Bond
Harmonic (MD) Rigid: ro=1.087
C-H
Harmonic: ro=1.087; K=333.5
M
Rigid: 8p=110.3
H-C-H
Rigid (GCMC) Harmonic: o= 110.3; K= 34.79
Angle
Harmonic (MD) Rigid: 6= 108.6
H-C-F
Harmonic: 6y=108.6; K =40.00
C -0.2469
Charges? F -0.1950
H +0.1473
C(FM)-Zr1(UiO-66) o =3.485; £=10.0535
F(FM)-Zr1(UiO-66) 0=3.134; £=0.0583
H(FM)-Zr1(UiO-66) 0=2.961; &=0.0365
. Pair
FM/UIO-66 | ¢ ieraction | Lenmard-Jones C(FM)-O1(UiO-66) o=3.498; ¢ = 0.0673
F(FM)-01(UiO-66) 0=13.145;£=0.0734
H(FM)-O1(Ui0-66) 0=2.972; £=10.0459
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C(FM)-C25(Ui0-66)
F(FM)-C25(UiO-66)

H(FM)-C25(Ui0-66)

0=13.966; ¢ =0.0503
0=13.566; ¢ =0.0548

0=3.370; £ =0.0343

C(FM)-029(Ui0-66)
F(FM)-029(Ui0-66)

H(FM)-029(Ui0-66)

0=3.498; £=0.0673
0=3.145;£=10.0734

0=2.972; £=0.0459

C(FM)-025(Ui0-66)
F(FM)-025(Ui0-66)

H(FM)-025(Ui0-66)

0=3.633; £=0.0875
0=3.266; ¢ =0.0954

0=3.086; ¢ =0.0597

C(FM)-C1(UiO-66)
F(FM)-C1(UiO-66)

H(FM)-C1(UiO-66)

0=4.128; £=0.0581
0=3.712; £=0.0633

0=3.507; £ =0.0396

C(FM)-C13(UiO-66)
F(FM)-C13(UiO-66)

H(FM)-C13(Ui0-66)

0=4.118; £ =0.0416
0=3.702; ¢ =0.0453

0=3.498; £=10.0284

C(FM)-H1(UiO-66)
F(FM)-H1(UiO-66)

H(FM)-H1(UiO-66)

0=3.211;=0.0458
o =2.887; &=10.0499

0=2.728;e=0.0312

C(FM)-H25(Ui0-66)
F(FM)-H25(Ui0-66)

H(FM)-H25(Ui0-66)

0=0.0;6=0.0
0=0.0;6=0.0

0=0.0;6=0.0

The units of energy, distance, angle, mass

electron charge, respectively. Lennard-Jones equation is E = 4¢/(o/r)!*~(0/r)°]. Harmonic equations

and charge are kcal/mol, Angstrom, degree, g/mol and

are E = K(r-rg)? (for bond) and E = K(6- 6,)° (for angle).
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Supplementary Figure 14 | Simulation structure of UiO-66. The simulation structure for (a) UiO-

66, compositing of (b) [ZrsO4(OH)4] clusters and (¢) BDC linkers.
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Supplementary Figure 15 | Simulated adsorption isotherms of UiO-66 confined CH4 and CO2 at
room temperature, compared to other published data.>® We find overall excellent agreement with

published data, validating our current simulation approach.
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Supplementary Figure 16 | The densities comparison between adsorbed FM inside UiO-66 and

free FM in bulk FM systems. The solid curves represent the FM densities inside UiO-66 and the

dashed curves indicate the bulk FM densities, at the stated temperatures.
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Supplementary Figure 17 | Simulated translational diffusion coefficients. Simulated translational
diffusion coefficients of (a) bulk FM, and (b, ¢, d) adsorbed FM (ads. FM) in UiO-66 at different

temperatures and pressures.
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Supplementary Figure 18 | Ionic conductivity of pure electrolyte with conventional liquid
electrolytes. It should be noted that conventional liquid carbonate electrolytes will be frozen at such
low temperate (e.g., < -30 °C) and render extremely low conductivity and high charge-transfer
impedance. While ether-based electrolyte can maintain a decent conductivity, such as the 1 M LiTFSI
in DOL/DME system, it poses an extremely increased charge-transfer impedance at subzero
temperature, partially due to the large desolvation energy of the dilute ether electrolyte.”® This will

increase the overpotential when discharging at reduced temperature, thereby leading to poor Li/CFx

performance.
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Supplementary Figure 19 | Pressure calibration. a, Pressure calibration of vapor pressure of FM
and the mixture of FM and COs at different temperatures. b, Schematic description of pressure tuning

process. During test, valve D was kept open to record the pressure. By controlling the valves of A, B

and C, the pressure inside the tested cell can be tuned to the set pressure.
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Supplementary Table 2 | Quantification of ionic conductivity value comparison between MPM

and commercial Celgard membranes at different pressures at -40 °C.

MPM Celgard
Pressure Bulk Resistance | lonic Conductivity | Bulk Resistance | lonic Conductivity
(Ohm) (mS/cm) (Ohm) (mS/cm)
75 psi (Pv) 3173 0.113 5371 0.065
70 psi 15165 0.0217 192190 0.0015
65 psi 32908 0.009 1695000 0.0001
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Supplementary Figure 20 | Discharge characteristics of Li//CFyx cells with conventional liquid

electrolyte system (1M LiPF¢ EC/DEC, 1:1 in volume) at room temperature and -40 °C.
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Supplementary Figure 21 | Nyquist impedance. Nyquist impedance of Li//CF; cells mixed with 20

wt. % Ui0O-66 using Celgard and MPM at (a) vapor pressure and (b) 70 psi at -40 °C.
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Supplementary Figure 22 | SEM images of CF, electrodes with 20 wt% of UiO-66. a, b the pristine
CF, electrode; ¢, d the CF, electrode after discharge at -40 °C and vapor pressure; e, f CF, electrode

after discharge at -40 °C and 70 psi.
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Supplementary Figure 23 | Cross-sectional SEM images of CF. electrodes with 20 wt% of UiO-
66. a, b the pristine electrode; ¢, d the electrode after discharge at -40 °C and vapor pressure; e, f the

electrode after discharge at -40 °C and 70 psi.
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Supplementary Figure 24 | Nyquist impedance of Li//CF, cell (with 20 wt% of UiO-66 in the

cathode) using MPM at 70 psi, -40 °C and different depths of discharge (DoDs). Inset shows the

detailed comparison of bulk impedances at high frequency regions.
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Supplementary Figure 25 | Characterization of stripped Li metal under vapor pressure (liquid
state). a Schematic showing the of Li//CF. cell with a relatively large Li chip as the anode while a
small CF, electrode disc as the cathode. b SEM image of the Li metal anode obtained from
disassembling the Li/MPM//CF; cell after discharging at -40 °C and vapor pressure. The white dotted
line indicates the boundary between stripped and unreacted Li metal. The enlarged SEM images of (¢)

stripped and (d) unreacted Li metal.
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Supplementary Figure 26 | Characterization of stripped Li metal under reduce pressure. a
Schematic showing the Li//CF; cell with a big Li chips as the anode while small CF, electrode disc as
the cathode. b SEM image of Li metal achieved by disassembling the Li/MPM//CF. cell after
discharging at -40 °C, and 70 psi. The white dotted line indicates the interface of stripped and unreacted

Li metal. The enlarged SEM images of (¢) stripped and (d) unreacted Li metal.
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Supplementary Figure 27 | Self-discharge testing of Li//CF. cells with MPM confined LGEs.

Three parallel cells were rested at room temperature and vapor pressure for 1, 30, and 60 days in

sequence before discharging at -40 °C. Note that the slight variation of capacities between 1-, 30- and

60-days storage time might be due to the variations in cell assembly process including mass loadings,

electrolyte/electrode thickness variations, gas feeding, and ohmic contact, which are often observed in

home-made cells.
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