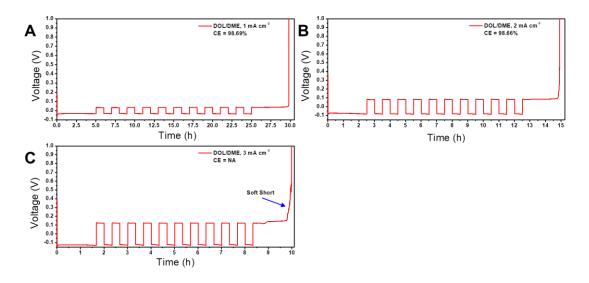
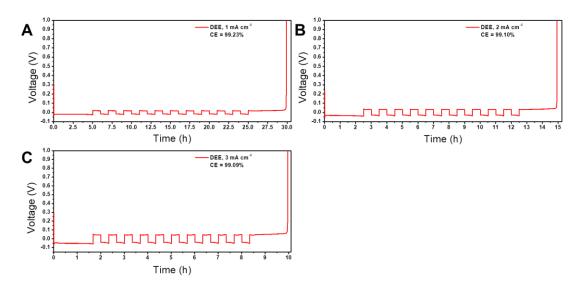

## Ultrahigh coulombic efficiency electrolyte enables Li||SPAN batteries with superior cycling performance

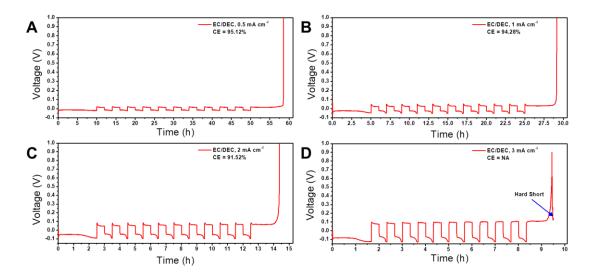
Haodong Liu<sup>1</sup>, John Holoubek<sup>1</sup>, Hongyao Zhou<sup>1</sup>, Amanda Chen<sup>1</sup>, Naijen Chang<sup>1</sup>, Zhaohui Wu<sup>1</sup>, Sicen Yu<sup>1</sup>, Qizhang Yan<sup>1</sup>, Xing Xing<sup>1</sup>, Yejing Li<sup>1</sup>, Tod A. Pascal<sup>1,2\*</sup>, Ping Liu<sup>1,2\*</sup>


<sup>1</sup> Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA

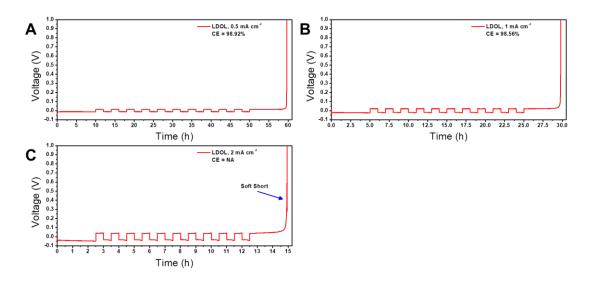
<sup>2</sup> Sustainable Power and Energy Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA


Corresponding authors: piliu@eng.ucsd.edu (P. Liu); tpascal@eng.ucsd.edu (T. Pascal)

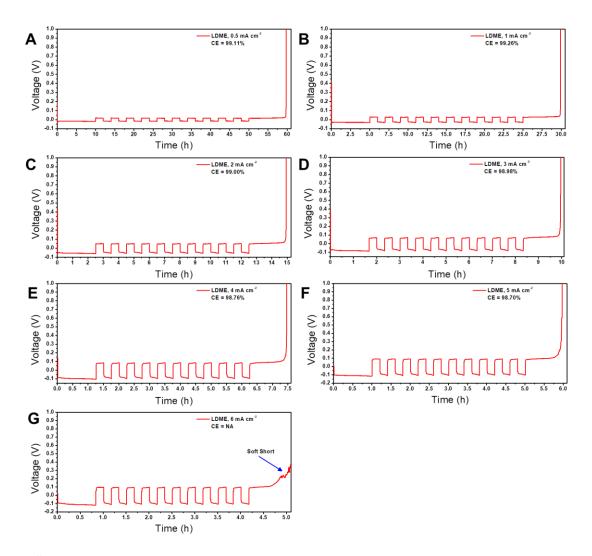



**Figure S1.** The comparison of Li-metal plating/stripping coulombic efficiencies in 1 M LiFSI/DOL-DME, and 1 M LiFSI/DEE electrolytes at various current densities.

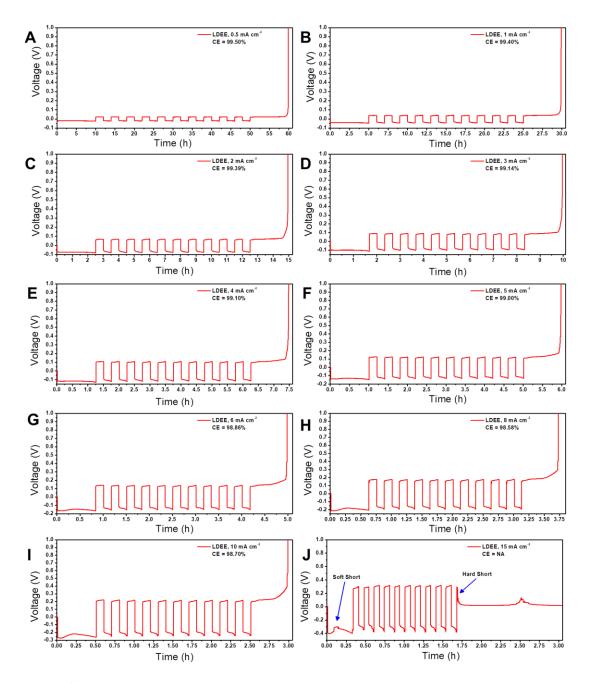



**Figure S2.** The plating/stripping voltage profiles of Li||Cu cell cycled in 1 M LiFSI/DOL-DME electrolyte. Prior to the test, a condition cycle was carried out on all the cells, in this step a Li film was first deposited onto the Cu foil at 0.5 mA cm<sup>-2</sup> for 10 hours, and then fully stripped to 1 V. Another Li film (5 mAh cm<sup>-2</sup>) was deposited again, only 1 mAh cm<sup>-2</sup> capacity of Li film was stripped and plated for 10 cycles. Finally, the Li film was fully stripped to 1 V. The current density during this test was (A) 1 mA cm<sup>-2</sup>; (B) 2 mA cm<sup>-2</sup>; (C) 3 mA cm<sup>-2</sup>.

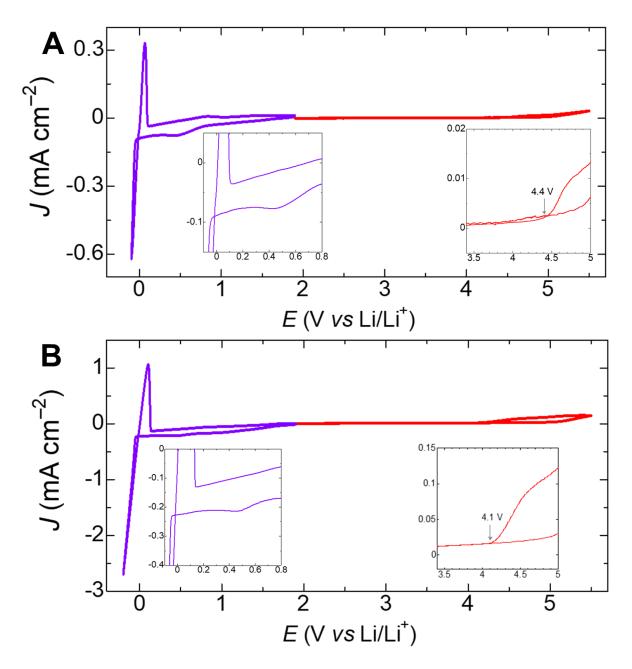



**Figure S3.** The plating/stripping voltage profiles of Li||Cu cell cycled in 1 M LiFSI/DEE electrolyte. Prior to the test, a condition cycle was carried out on all the cells, in this step a Li film was first deposited onto the Cu foil at 0.5 mA cm<sup>-2</sup> for 10 hours, and then fully stripped to 1 V. Another Li film (5 mAh cm<sup>-2</sup>) was deposited again, only 1 mAh cm<sup>-2</sup> capacity of Li film was stripped and plated for 10 cycles. Finally, the Li film was fully stripped to 1 V. The current density during this test was (A) 1 mA cm<sup>-2</sup>; (B) 2 mA cm<sup>-2</sup>; (C) 3 mA cm<sup>-2</sup>.




**Figure S4.** The plating/stripping voltage profiles of Li||Cu cell cycled in 1 M LiFSI/EC-DEC electrolyte. Prior to the test, a condition cycle was carried out on all the cells, in this step a Li film was first deposited onto the Cu foil at 0.5 mA cm<sup>-2</sup> for 10 hours, and then fully stripped to 1 V. Another Li film (5 mAh cm<sup>-2</sup>) was deposited again, only 1 mAh cm<sup>-2</sup> capacity of Li film was stripped and plated for 10 cycles. Finally, the Li film was fully stripped to 1 V. The current density during this test was (A) 0.5 mA cm<sup>-2</sup>; (B) 1 mA cm<sup>-2</sup>; (C) 2 mA cm<sup>-2</sup>; (D) 3 mA cm<sup>-2</sup>.

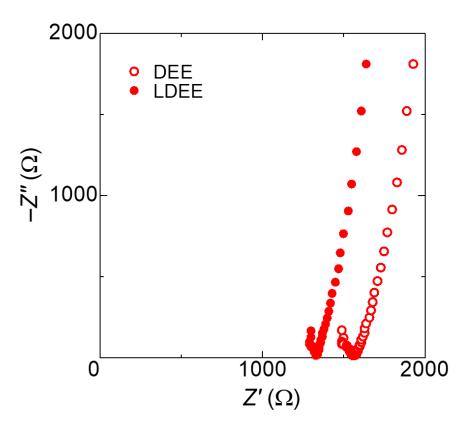



**Figure S5.** The plating/stripping voltage profiles of Li||Cu cell cycled in 0.47 M LiFSI/DOL-BTFE electrolyte. Prior to the test, a condition cycle was carried out on all the cells, in this step a Li film was first deposited onto the Cu foil at 0.5 mA cm<sup>-2</sup> for 10 hours, and then fully stripped to 1 V. Another Li film (5 mAh cm<sup>-2</sup>) was deposited again, only 1 mAh cm<sup>-2</sup> capacity of Li film was stripped and plated for 10 cycles. Finally, the Li film was fully stripped to 1 V. The current density during this test was (A) 0.5 mA cm<sup>-2</sup>; (B) 1 mA cm<sup>-2</sup>; (C) 2 mA cm<sup>-2</sup>.



**Figure S6.** The plating/stripping voltage profiles of Li||Cu cell cycled in 2.54 M LiFSI/DME-BTFE electrolyte. Prior to the test, a condition cycle was carried out on all the cells, in this step a Li film was first deposited onto the Cu foil at 0.5 mA cm<sup>-2</sup> for 10 hours, and then fully stripped to 1 V. Another Li film (5 mAh cm<sup>-2</sup>) was deposited again, only 1 mAh cm<sup>-2</sup> capacity of Li film was stripped and plated for 10 cycles. Finally, the Li film was fully stripped to 1 V. The current density during this test was (A) 0.5 mA cm<sup>-2</sup>; (B) 1 mA cm<sup>-2</sup>; (C) 2 mA cm<sup>-2</sup>; (D) 3 mA cm<sup>-2</sup>; (E) 4 mA cm<sup>-2</sup>; (F) 5 mA cm<sup>-2</sup>; (G) 6 mA cm<sup>-2</sup>.




**Figure S7.** The plating/stripping voltage profiles of Li||Cu cell cycled in 1.8 M LiFSI/DEE-BTFE electrolyte. Prior to the test, a condition cycle was carried out on all the cells, in this step a Li film was first deposited onto the Cu foil at 0.5 mA cm<sup>-2</sup> for 10 hours, and then fully stripped to 1 V. Another Li film (5 mAh cm<sup>-2</sup>) was deposited again, only 1 mAh cm<sup>-2</sup> capacity of Li film was stripped and plated for 10 cycles. Finally, the Li film was fully stripped to 1 V. The current density during this test was (A) 0.5 mA cm<sup>-2</sup>; (B) 1 mA cm<sup>-2</sup>; (C) 2 mA cm<sup>-2</sup>; (D) 3 mA cm<sup>-2</sup>; (E) 4 mA cm<sup>-2</sup>; (F) 5 mA cm<sup>-2</sup>; (G) 6 mA cm<sup>-2</sup>; (H) 8 mA cm<sup>-2</sup>; (I) 10 mA cm<sup>-2</sup>; (J) 15 mA cm<sup>-2</sup>.



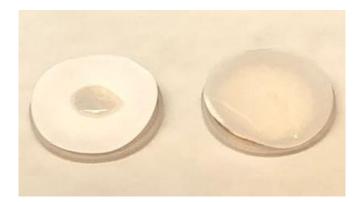
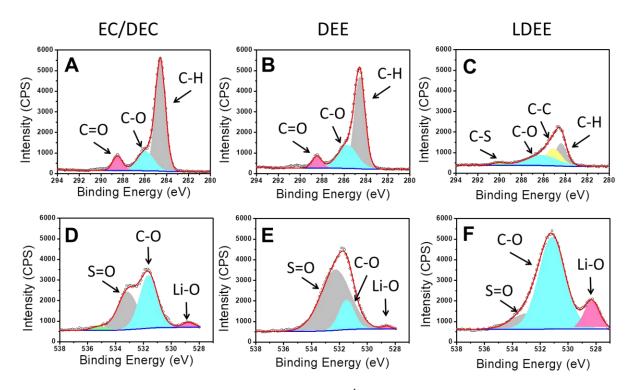
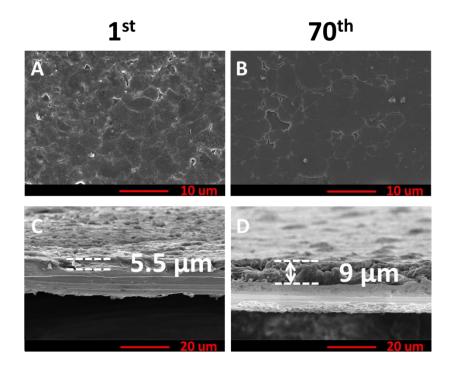
**Figure S8.** Reduction and oxidation stabilities for different electrolytes as evaluated on Cu and Al electrodes, respectively. At a scanning rate of 5 mV s<sup>-1</sup>. (A) 9 M LiFSI/DEE electrolyte. (B) 1.8 M LiFSI/DEE electrolyte.

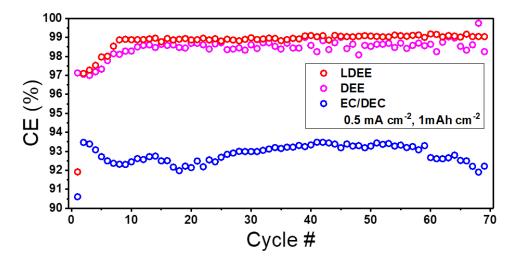
Electrochemical window: A three-electrodes cell was used to perform cyclic voltammetry, where the working electrode is Cu or Al foil, the reference and counter electrodes are Li metal foil. Cu

working electrode was used at the reductive scan ( $-0.1 \sim 1.9$  V vs. Li/Li<sup>+</sup>). The scan rate was 5 mV s<sup>-1</sup>. The scan range of  $-0.2 \sim 1.9$  V was used for the electrolyte with BTFE, because the Li plating potential shifted to the negative side. Al working electrode was used at the oxidative scan ( $1.9 \sim 5.5$  V vs. Li/Li<sup>+</sup>). The scan rate was 5 mV s<sup>-1</sup>. Before the measurement, the Al working electrode was swept between  $1.9 \sim 5.5$  V at a fast scan rate ( $100 \text{ mV s}^{-1}$ ) for 10 cycles to clean and passivate the electrode surface.

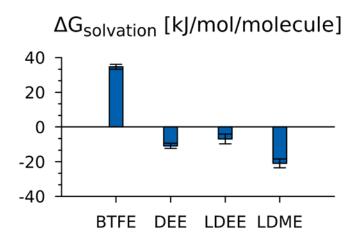


**Figure S9.** Electrochemical impedance spectroscopy for measuring conductivity of the electrolyte. 9 M LiFSI/DEE electrolyte (DEE), and 1.8 M LiFSI/DEE electrolyte (LDEE). Conductivity measurement: The electrolyte was placed between two mirror-finished glassy carbon electrodes with active diameter of 3.0 mm. The distance between the electrodes was 2.0 mm. An alternating voltage of 10 mV was applied between the electrodes at the frequency from 5 MHz to 100 Hz to obtain the impedance spectra. The measurement was performed at room temperature (25 °C).

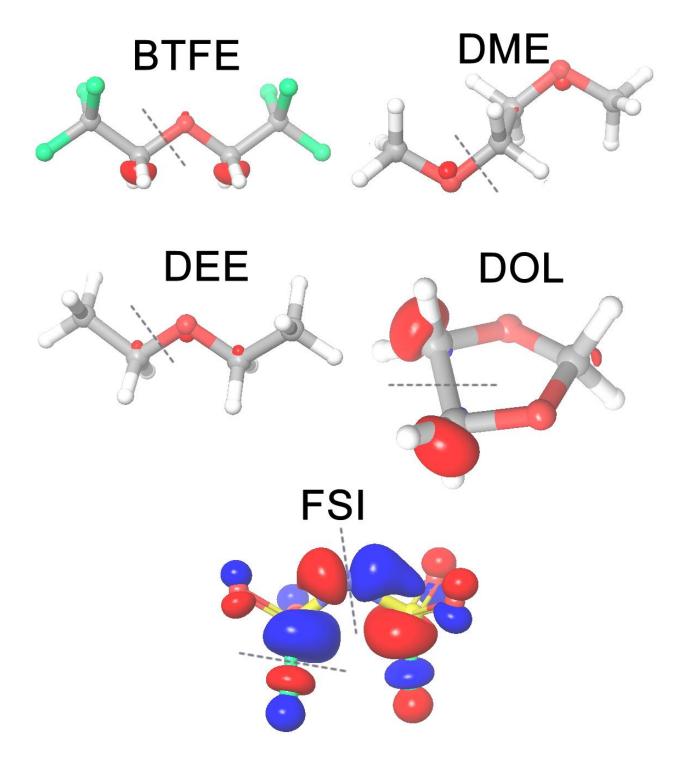






Figure S10. Wettability tests of 9 M LiFSI/DEE and 1.8 M LiFSI/DEE-BTFE electrolytes on Celgard separator.

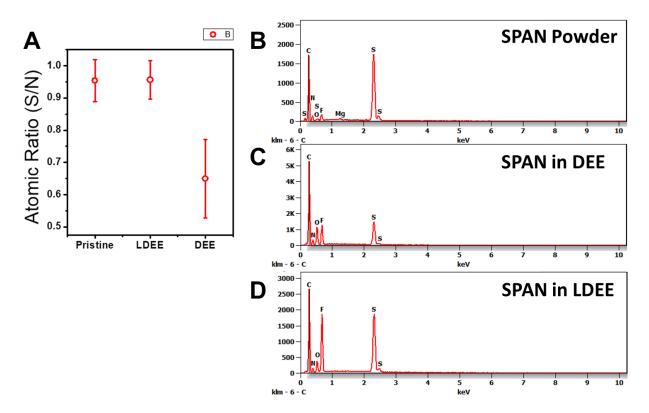



**Figure S11.** XPS analyses of Cu electrode on its 70<sup>th</sup> deposition. (A) C 1s region of Cu electrode from 1 M LiFSI/EC-DEC electrolyte. (B) C 1s region of Cu electrode from 1 M LiFSI/DEE electrolyte. (C) C 1s region of Cu electrode from 1.8 M LiFSI/DEE-BTFE electrolyte. (D) O 1s region of Cu electrode from 1 M LiFSI/EC-DEC electrolyte. (E) O 1s region of Cu electrode from 1 M LiFSI/DEE electrolyte. (F) O 1s region of Cu electrode from 1.8 M LiFSI/DEE-BTFE electrolyte. BTFE electrolyte. (F) O 1s region of Cu electrode from 1.8 M LiFSI/DEE-BTFE electrolyte. (F) O 1s region of Cu electrode from 1.8 M LiFSI/DEE-BTFE electrolyte. (F) O 1s region of Cu electrode from 1.8 M LiFSI/DEE-BTFE electrolyte.




**Figure S12.** SEM images of Cu electrode from 1.8 M LiFSI/DEE-BTFE electrolyte. Top views: (A)  $1^{st}$  deposition. (B)  $70^{th}$  deposition. Cross sectional views: (C)  $1^{st}$  deposition. (D)  $70^{th}$  deposition. At 0.5 mA cm<sup>-2</sup> for 1 mAh cm<sup>-2</sup>.




**Figure S13.** Coulombic efficiencies of Li||Cu cells cycled in 1.8 M LiFSI/DEE-BTFE, 1 M LiFSI/DEE, and 1 M LiFSI/EC-DEC electrolytes at 0.5 mA cm<sup>-2</sup> for 1 mAh cm<sup>-2</sup>.

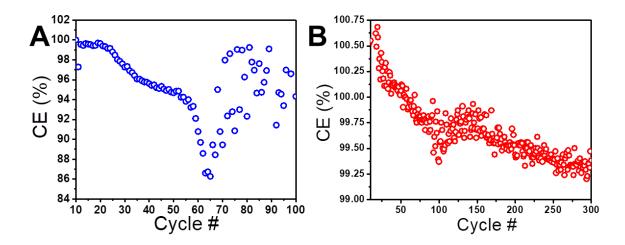


**Figure S14:** LiFSI Free energy of solvation for the indicated solvents/mixtures. Data for LiFSI in 1.8M DEE, 1.8M LDEE and 2.5M LDME is presented. Data for an isolated LiFSI in pure BTFE (i.e. infinite dilution limit) is also presented as a reference. The errorbars represent the uncertainty in our calculations (standard deviation).



**Figure S15.** Electron density plot of the lowest unoccupied molecular orbitals (LUMOs) of the various molecules, evaluated at the B3LYP/aug-cc-pVTZ level of theory. In all cases, the LUMOs are anti-bonding states and the dashed lines are indicative of the chemical bonds with the most anti-bonding character. These bonds will be significantly weakened and will likely cleave when the LUMO is occupied at reductive potentials.




**Figure S16.** (A) Statistic S/N ratio results of SPAN. EDS spectra of: (B) pristine SPAN powders. (C) SPAN electrodes cycled in 1 M LiFSI/DEE. At 0.5 mA cm<sup>-2</sup>, after 650 cycles. (D) SPAN electrodes cycled in 1.8 M LiFSI/DEE-BTFE. At 0.5 mA cm<sup>-2</sup>, after 650 cycles.



**Figure S17.** XPS analyses of SPAN: (A) F 1s region of pristine SPAN powders. (B) F 1s region of SPAN after cycling in 1 M LiFSI/DEE electrolyte for 650 cycles. (C) F 1s region of SPAN after cycling in 1.8 M LiFSI/DEE-BTFE electrolyte for 650 cycles. At 0.5 mA cm<sup>-2</sup>.



**Figure S18.** Charge/discharge voltage profiles of SPAN: (A) In 1 M LiFSI/EC-DEC electrolyte. (B) In 1.8 M LiFSI/DEE-BTFE electrolyte. At 0.875 mA cm<sup>-2</sup>, between 1 V and 3 V. The lithium chips are 40  $\mu$ m.



**Figure S19.** CEs of Li||SPAN full cells. (A) In 1 M LiFSI/EC-DEC electrolyte. (B) In 1.8 M LiFSI/DEE-BTFE electrolyte. At 1.75 mA cm<sup>-2</sup>, between 1 V and 3 V. The lithium chips are 40  $\mu$ m.

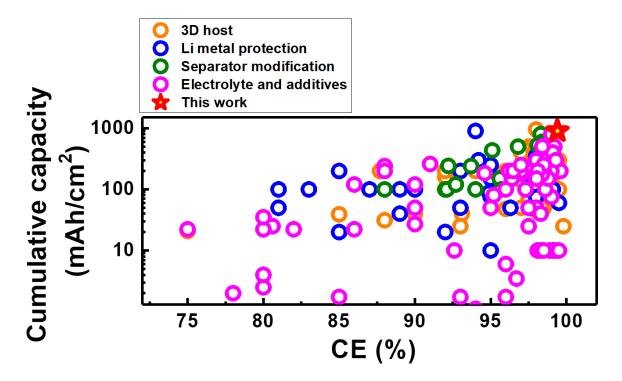
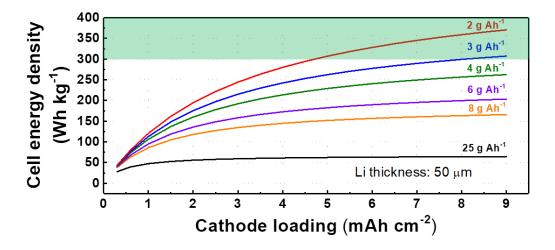




Figure S20. Summary of lithium metal anode coulombic efficiencies and lifespan from literatures.



**Figure S21.** Calculated cell energy density of a  $70 \times 41.5$  mm Li||SPAN pouch cell with a 50µm Li-metal anode and 32 layers of cathodes at various cathode loadings and various electrolyte contents. The region of the graph above the 300 Wh kg<sup>-1</sup> goal is shaded.

| Electrolyte    | Molar ratio    | Mass ratio    | Molality<br>(mol kg <sup>-1</sup> ) |
|----------------|----------------|---------------|-------------------------------------|
| LiFSI/EC/DEC   | 0.2:1.14:0.85  | 0.374:1:1     | 1                                   |
| LiFSI/DOL/DME  | 0.2:1.35:1.11  | 0.374:1:1     | 1                                   |
| LiFSI/DEE      | 0.1:1.35       | 0.187:1       | 1                                   |
| LiFSI/DEE/BTFE | 0.9:1.35:2.20  | 1.684:1:4     | 1.8                                 |
| LiFSI/DME/BTFE | 1.32:1.35:2.20 | 2.476:1.216:4 | 2.54                                |
| LiFSI/DOL/BTFE | 0.24:1.35:2.20 | 0.441:1:4     | 0.47                                |

 Table S1. Detail composition of electrolytes.

**Table S2.** Summary of lithium metal anode coulombic efficiencies with different strategies.

| 3D host                                                                                                                                                                  |                                                            |                                                                           |                                   |                                     |            |                                 |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------|-------------------------------------|------------|---------------------------------|--------|
| Tile of literature                                                                                                                                                       | Strategy                                                   | Electrolyte                                                               | Current<br>(mA cm <sup>-2</sup> ) | Capacity<br>(mAh cm <sup>-2</sup> ) | Cycle<br># | Cumulative<br>Capacity<br>(mAh) | CE     |
| Li <sub>2</sub> O-Reinforced Cu Nanoclusters as Porous Structure for<br>Dendrite-Free and Long-Lifespan Lithium Metal Anode                                              | Li <sub>2</sub> O–Cu porous anode                          | 1 M LiPF <sub>6</sub> -EC/DMC + 2 vol% FEC                                | 0.5                               | 1                                   | 150        | 150                             | 97%    |
|                                                                                                                                                                          |                                                            |                                                                           | 0.25                              | 0.5                                 | 300        | 150                             | 98.37% |
| A Scalable 3D Li metal Anode                                                                                                                                             | Multifunctional 3D Li host                                 | $1 \text{ M LiPF}_{6}\text{-EC/DMC} + 2 \text{ wt\% VC} + 0.02 \text{ M}$ | 0.5                               | 1                                   | 210        | 210                             | 98.11% |
|                                                                                                                                                                          |                                                            | LiNO <sub>3</sub>                                                         | 1                                 | 1                                   | 200        | 200                             | 97.90% |
|                                                                                                                                                                          |                                                            |                                                                           | 2                                 | 2                                   | 100        | 200                             | 97.05% |
| Vacuum distillation derived 3D porous current collector for                                                                                                              | 3D porous Cu current collector                             | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.)                                  | 1.04                              | 0.26                                | 80         | 20.8                            | 75%    |
| stable lithium-metal batteries                                                                                                                                           |                                                            |                                                                           | 0.52                              | 0.26                                | 120        | 31.2                            | 88%    |
| Selective Deposition and Stable Encapsulation of Lithium through Heterogeneous Seeded Growth                                                                             | Hollow carbon spheres with gold nanoparticle seed inside   | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.) + 10% FEC +<br>1 % VC            | 0.5                               | 1                                   | 300        | 300                             | 98%    |
| Lithiophilic Cu–Ni Core–shell Nanowire Network as a Stable Host for Improving Lithium Anode Performance                                                                  | 3D Cu-Ni core-shell nanowire network                       | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.)                                  | 2                                 | 2                                   | 100        | 200                             | 92%    |
| Interconnected hollow carbon nanospheres for stable                                                                                                                      | Interconnected hollow carbon                               | 1 m LiTFSI in DOL/DME with 1% LiNO3 and                                   | 0.25                              | 1                                   | 150        | 150                             | 99.0%  |
| lithium metal anodes                                                                                                                                                     | nanospheres                                                | $100 \times 10^{-3} \text{ m Li}_2 S_8$                                   | 0.5                               | 1                                   | 150        | 150                             | 98.5%  |
| Prestoring Lithium into Stable 3D Nickel Foam Host as<br>Dendrite-Free Lithium Metal Anode                                                                               | Ni foam as a stable host                                   | 1 M LiPF <sub>6</sub> -EC/DMC/EMC (1:1:1 vol.)                            | 1                                 | 1                                   | 100        | 100                             | 89%    |
| Free-Standing Copper Nanowire Network Current<br>Collector for Improving Lithium Anode Performance                                                                       | Cu nanowire network                                        | 1 M LiPF <sub>6</sub> -EC/EMC (2:5 wt.) with VC additives                 | 1                                 | 1                                   | 50         | 50                              | 93%    |
| 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries                                                                           | Porous carbon with ZnO quantum dots                        | 1 M LiPF <sub>6</sub> -EC/DMC + 1wt% FEC                                  | 0.5                               | 1                                   | 80         | 40                              | 90%    |
| A carbon-based 3D current collector with surface protection for Li metal anode                                                                                           | Carbon nanotube 3D host                                    | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.)                                  | 1                                 | 2                                   | 80         | 160                             | 92%    |
| Lithiophilic Sites in Doped Graphene Guide Uniform<br>Lithium Nucleation for Dendrite - Free Lithium Metal<br>Anodes                                                     | N - doped graphene                                         | 1.0 m LiTFSI in DOL/DME with 5% LiNO3                                     | 0.5                               | 1                                   | 150        | 150                             | 98.50% |
| Enhanced Stability of Lithium Metal Anode by using a 3D<br>Porous Nickel Substrate                                                                                       | 3D Porous Nickel Substrate                                 | LiFSI in DMC (mol ratio 0.51:1.1)                                         | 2                                 | 1                                   | 70         | 70                              | 97.5%  |
| Dendrite - Free Lithium Deposition Induced by Uniformly<br>Distributed Lithium Ions for Efficient Lithium Metal<br>Batteries                                             | 3D glass fiber cloth                                       | 1 m LiTFSI in DOL/DME with 2% LiNO <sub>3</sub>                           | 0.5                               | 0.5                                 | 90         | 45                              | 98%    |
| Dual-Phase Lithium Metal Anode Containing a<br>Polysulfide-Induced Solid Electrolyte Interphase and<br>Nanostructured Graphene Framework for Lithium–Sulfur<br>Batteries | Nanostructured graphene<br>framework                       | 1 m LiTFSI in DOL/DME with 1% LiNO3 and 0.1 M Li $_2S_8$                  | 0.5                               | 0.5                                 | 100        | 50                              | 97%    |
| Direct growth of 3D host on Cu foil for stable lithium metal anode                                                                                                       | 3D host                                                    | 1 M LiTFSI in DOL/DME with 1 wt% LiNO3                                    | 1                                 | 1                                   | 250        | 250                             | 99%    |
| Stable Li Plating/Stripping Electrochemistry Realized by a<br>Hybrid Li Reservoir in Spherical Carbon Granules with 3D<br>Conducting Skeletons                           | three-dimensional conducting skeleton                      | LiTFSI in DOL/DME with 1wt% LiNO <sub>3</sub>                             | 0.5                               | 2                                   | 475        | 950                             | 98%    |
| Conductive Nanostructured Scaffolds Render Low Local<br>Current Density to Inhibit Lithium Dendrite Growth                                                               | unstacked graphene " drum "<br>and dual - salt electrolyte | 0.75 m LiTFSI in DOL and 1.5 m LiFSI in DME 2:1 (volume ratio)            | 0.5                               | 0.5                                 | 50         | 25                              | 93%    |
| Chemical Dealloying Derived 3D Porous Current Collector                                                                                                                  | A 3D porous Cu current collector                           | 1 m LiTFSI in DOL/DME with 1% LiNO3                                       | 0.5                               | 1                                   | 250        | 250                             | 97%    |
| for Li Metal Anodes                                                                                                                                                      |                                                            |                                                                           | 1                                 | 1                                   | 140        | 140                             | 97%    |
| A facile annealing strategy achieving in-situ controllable $Cu_2O$ nanoparticles decorated copper foil as current                                                        | Cu <sub>2</sub> O nanoparticles on Cu foil                 | 1 m LiTFSI in DOL/DME with 1% LiNO <sub>3</sub>                           | 1                                 | 1                                   | 200        | 200                             | 99.1%  |

| collector for stable lithium metal anode                                                                          |                                                  |                                                     |     |      |     |     |         |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-----|------|-----|-----|---------|
| Lithiophilic-lithiophobic gradient interfacial layer for a                                                        | CNT with various ZnO loadings                    | 0.6 M LiTFSI dissolved in 1:1 w/w DOL/DME           |     |      |     | 300 |         |
| highly stable lithium metal anode                                                                                 | layer                                            | $+ 0.4 \text{ M LiNO}_3$                            | 2   | 3    | 100 | 500 | 99.50%  |
| Unique 3D nanoporous/macroporous structure Cu current                                                             | 3D conductive current collectors                 | 1 M LiTFSI in DOL/DME (1:1 by volume) with          |     |      |     | 200 |         |
| collector for dendrite-free lithium deposition                                                                    |                                                  | 2 wt% LiNO <sub>3</sub>                             | 1   | 1    | 200 | 200 | 98%     |
| A Versatile Strategy to Fabricate 3D Conductive                                                                   | 3D conductive current collectors                 | 1M LiPF <sub>6</sub> in EC/DEC                      |     |      |     | 200 |         |
| Frameworks for Lithium Metal Anodes                                                                               |                                                  |                                                     | 0.5 | 1    | 200 |     | 94%     |
| Accommodating lithium into 3D current collectors with a                                                           | 3D Cu foil                                       | 1 m LiTFSI in DOL/DME with 1% LiNO3 and             | 0.7 |      |     | 50  | 00.50   |
| submicron skeleton towards long-life lithium metal anodes                                                         |                                                  | 0.005 M Li <sub>2</sub> S <sub>8</sub>              | 0.5 | 1    | 50  |     | 98.5%   |
| Vertically Grown Edge - Rich Graphene Nanosheets for                                                              | Edge - Rich Graphene                             | 1 m LiTFSI in DOL/DME with 2% LiNO <sub>3</sub>     |     |      |     | 200 |         |
| Spatial Control of Li Nucleation                                                                                  | Nanosheets                                       |                                                     | 1   | 1    | 200 |     | 97.6%   |
| Oxygen-rich carbon nanotube networks for enhanced                                                                 | Oxygen-rich carbon nanotube                      | 1 M LiTFSI in DOL/DME (1:1 by volume) with          |     |      |     | 400 |         |
| lithium metal anode                                                                                               | networks                                         | 1 wt% LiNO <sub>3</sub>                             | 1   | 2    | 200 |     | 99%     |
| Regulating Li deposition by constructing LiF-rich host for                                                        | An artificial LiF host                           | 1 m LiTFSI in DOL/DME                               |     |      | 1.0 |     | 98.5%   |
| dendrite-free lithium metal anode                                                                                 |                                                  |                                                     | 1   | 1    | 10  | 10  |         |
| A synergistic strategy for stable lithium metal anodes using                                                      | 3D porous carbon networks                        | 1 m LiTFSI in DOL/DME with 2% LiNO3                 | 0.5 | 1    | 300 | 300 | 99%     |
| 3D fluorine-doped graphene shuttle-implanted porous                                                               | 1                                                |                                                     |     |      |     | 150 |         |
| carbon networks                                                                                                   |                                                  |                                                     | 2   | 1    | 150 | 150 | 98%     |
| Three-dimensional ordered macroporous Cu current                                                                  | three-dimensionally ordered                      | 1 M LiTFSI in DOL/DME                               |     |      |     |     |         |
| collector for lithium metal anode: Uniform nucleation by                                                          | macroporous                                      |                                                     | 0.5 | 0.5  | 80  | 40  | 93.1%   |
| seed crystal                                                                                                      | -                                                |                                                     |     |      |     |     |         |
| Interlayer Lithium Plating in Au Nanoparticles Pillared                                                           | Au Nanoparticles Pillared                        | 1 m LiTFSI in DOL/DME with 1% LiNO3                 | 0.5 | 2    | 200 |     | 98.70%  |
| Reduced Graphene Oxide for Lithium Metal Anodes                                                                   | Reduced Graphene Oxide                           |                                                     | 0.5 | 2    | 200 | 400 | 96.70%  |
| Efficient and stable cycling of lithium metal enabled by a                                                        | conductive carbon primer layer                   | 1 M LiPF <sub>6</sub> in EC/EMC 3:7                 | 0.5 | 0.39 | 100 | 39  | 85%     |
| conductive carbon primer layer                                                                                    |                                                  |                                                     | 0.5 | 0.39 | 100 |     | 8370    |
| Highly stable lithium metal battery with an applied three-                                                        | three-dimensional mesh                           | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.)            | 1   | 1    | 50  |     | 98.35%  |
| dimensional mesh structure interlayer                                                                             |                                                  |                                                     | 1   | 1    | 50  | 50  | 98.3370 |
| Robust Expandable Carbon Nanotube Scaffold for                                                                    | carbon nanotube paper with                       | 1 m LiTFSI in DOL/DME                               | 1   | 5    | 100 | 500 | 97.5%   |
| Ultrahigh - Capacity Lithium - Metal Anodes                                                                       | deposited Li metal                               |                                                     | 1   | 5    | 100 |     | 97.570  |
| AlF <sub>3</sub> -Modified carbon nanofibers as a multifunctional 3D                                              | AlF <sub>3</sub> -Modified carbon nanofibers     | 1 M LiPF <sub>6</sub> in EC/DMC with 10% FEC        | 1   | 1    | 450 | 450 | 97.2%   |
| interlayer for stable lithium metal anodes                                                                        |                                                  |                                                     | 1   | 1    | 450 |     | 97.270  |
| A substrate-influenced three-dimensional unoriented                                                               | $3D Cu + MnO_2$                                  | 1 m LiTFSI in DOL/DME with 1% LiNO <sub>3</sub>     | 0.5 | 1    | 150 | 150 | 97%     |
| dispersion pathway for dendrite-free lithium metal anodes                                                         |                                                  |                                                     | 0.5 | -    | 150 |     | 2170    |
| Powder-sintering derived 3D porous current collector for                                                          | 3D current collector                             | 1 m LiTFSI in DOL/DME with 1% LiNO <sub>3</sub>     | 1   | 1    | 160 | 160 | 98.3%   |
| stable lithium metal anode                                                                                        |                                                  |                                                     | 1   | -    | 100 |     | 20.570  |
| Graphene nested porous carbon current collector for                                                               | carbon fiber cloth + ZnO                         | 1 m LiTFSI in DOL/DME                               | 1   | 12   | 60  | 720 | 98.5%   |
| lithium metal anode with ultrahigh areal capacity                                                                 |                                                  |                                                     | 2   | 12   | 40  | 480 | 98%     |
| Graphene anchored on Cu foam as a lithiophilic 3D current                                                         | Graphene anchored on Cu foam                     | 1 m LiTFSI in DOL/DME with 2% LiNO <sub>3</sub>     | 0.5 | 1    | 150 | 150 | 98.60%  |
| collector for a stable and dendrite-free lithium metal anode                                                      | · · · · · · · · · · · · · · · · · · ·            |                                                     | 2   | 1    | 250 | 250 | 97.40%  |
|                                                                                                                   | .1 1 1                                           |                                                     |     | 1    |     |     |         |
| Uniform Li deposition regulated via three-dimensional polyvinyl alcohol nanofiber networks for effective Li metal | three-dimensional nanofiber<br>network structure | 1 m LiTFSI in DOL/DME with 3% LiNO <sub>3</sub>     | 1   | 1    | 200 | 200 | 98.60%  |
| anodes                                                                                                            | network structure                                | 1 III LITTSI III DOL/DIVIE WIUI 570 LINO3           | 3   | 1    | 200 | 200 | 97.40%  |
|                                                                                                                   |                                                  |                                                     | 5   | 1    | 200 | 200 | 87.70%  |
| Hierarchically Bicontinuous Porous Copper as Advanced                                                             |                                                  |                                                     | 1   | 1    | 270 | 270 | 98%     |
| 3D Skeleton for Stable Lithium Storage                                                                            |                                                  |                                                     | 1.5 | 1    | 200 | 200 | 96%     |
|                                                                                                                   | highly porous copper                             | 1 m LiTFSI in DOL/DME with 1% LiNO <sub>3</sub>     | 2   | 1    | 150 | 150 | 95%     |
|                                                                                                                   |                                                  |                                                     | -   |      |     |     |         |
|                                                                                                                   |                                                  |                                                     | 3   | 1    | 100 | 100 | 94%     |
| Suppressing Li Metal Dendrites Through a Solid Li - Ion<br>Backup Layer                                           | lithiated multiwall carbon nanotubes             | 1 m LiTFSI in DOL/DME                               | 1   | 0.5  | 50  | 25  | 99.8%   |
| Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode                      | zinc oxide/carbon nanotube sublayer              | 0.6 M LiTFSI DOL/DME + 0.4 M LiNO <sub>3</sub>      | 2   | 3    | 100 | 300 | 99.5%   |
| Stretchable Lithium Metal Anode with Improved                                                                     | Stretchable Lithium Metal Anode                  | 1 M LiTFSI in DOL/DME + 1wt% LiNO <sub>3</sub>      | 1   | 1    | 176 | 176 | 97.50%  |
| Mechanical and Electrochemical Cycling Stability                                                                  |                                                  |                                                     | 2   | 1    | 48  | 48  | 96%     |
| Pseudocapacitance Induced Uniform Plating/Stripping of                                                            | 3D vertical graphene nanowalls                   | 1 M LiPF <sub>6</sub> in EC:DEC 1:1 with 2 vol% FEC | 0.5 | 1    | 250 | 250 | -       |
| r seudocapaentanee muuceu Onnorm r raung/Surpping or                                                              | 50 vertical graphene nanowalis                   | 1 WI LITTO III EC.DEC 1.1 WIII 2 VOI70 FEC          | 0.3 | 1    | 230 | 230 | 97%     |

| Li Metal Anode in Vertical Graphene Nanowalls                                                                              | on nickel (Ni) foam (VGN/Ni)               | 1 M LiTFSI in DOL/DME with 0.2M LiNO3                       | 0.5                               | 1                                   | 150        | 150                             | 99%    |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------|-----------------------------------|-------------------------------------|------------|---------------------------------|--------|
| In Situ Synthesis of a Lithiophilic Ag-Nanoparticles-                                                                      | Lithiophilic Ag-Nanoparticles-             |                                                             | 0.5                               | 1                                   | 200        | 200                             | 98%    |
| Decorated 3D Porous Carbon Framework toward Dendrite-                                                                      | Decorated 3D Porous Carbon                 | 1 M LiTFSI in DOL/DME + 2wt% LiNO3                          | 1                                 | 1                                   | 150        | 150                             | 96%    |
| Free Lithium Metal Anodes<br>Engineering stable interfaces for three-dimensional lithium                                   | Framework<br>3D electrode using ALD-coated | 1 M LiPF <sub>6</sub> in EC/DEC w/ VC and 10% FEC           | 2                                 | 1                                   | 100        | 100                             | 96%    |
| metal anodes                                                                                                               | hollow carbon spheres                      | 1 M Lit F <sup>3</sup> in DOL/DME with 5% LiNO <sub>3</sub> | 0.5                               | 1                                   | 500        | 500                             | 96%    |
| Crumpled Graphene Balls Stabilized Dendrite-free Lithium                                                                   | Crumpled Graphene Balls                    | 1 M LITTSI III DOL/DME with 3% LINO <sub>3</sub>            | 0.5                               | 1                                   | 500        | 350                             | 99%    |
| Metal Anodes                                                                                                               | Crumpled Graphene Bans                     | 1 M LITTSI III DOL/DME WILL I W0% LINO3                     | 0.5                               | 0.5                                 | 700        | 350                             | 97.5%  |
| Three-dimensional pie-like current collectors for dendrite-<br>free lithium metal anodes                                   | 3D host                                    | 1 M LiTFSi in DOL/DME with 1 wt% LiNO <sub>3</sub>          | 1                                 | 2                                   | 200        | 400                             | 97%    |
|                                                                                                                            |                                            |                                                             | 0.2                               | 1                                   | 100        | 100                             | 99.5%  |
| Spatially uniform deposition of lithium metal in 3D Janus                                                                  | Janus 3D current collector                 | 1 m LiTFSI in DOL/DME with 1% LiNO <sub>3</sub>             | 1                                 | 1                                   | 100        | 100                             | 99.1%  |
| hosts                                                                                                                      |                                            |                                                             | 2                                 | 1                                   | 100        | 100                             | 97.6%  |
|                                                                                                                            | Li n                                       | netal protection                                            | -<br>-                            |                                     |            |                                 |        |
| Tile of literature                                                                                                         | Strategy                                   | Electrolyte                                                 | Current<br>(mA cm <sup>-2</sup> ) | Capacity<br>(mAh cm <sup>-2</sup> ) | Cycle<br># | Cumulative<br>Capacity<br>(mAh) | CE     |
| An Artificial Solid Electrolyte Interphase with High Li-Ion                                                                | Cu <sub>3</sub> N+SBR artificial SEI       | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.) + 10 wt% FEC       | 1                                 | 1                                   | 100        | 100                             | 97.40% |
| Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes                                         |                                            |                                                             | 0.25                              | 0.5                                 | 150        | 75                              | 98%    |
| The Long Life-span of a Li-metal Anode Enabled by a<br>Protective Layer Based on the Pyrolyzed N-doped Binder<br>Network   | Polyacrylonitrile protection               | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.) + 5 vol% FEC       | 0.5                               | 1                                   | 350        | 350                             | 98%    |
| Poly(dimethylsiloxane) Thin Film as a Stable Interfacial                                                                   | Poly(dimethylsiloxane) artificial          |                                                             | 0.25                              | 1                                   | 200        | 200                             | 93%    |
| Layer for High-Performance Lithium-Metal Battery Anodes                                                                    | SEI                                        | $1 \text{ M LiPF}_6$ -EC/DEC (1:1 vol.) + 2 wt% VC          | 0.5                               | 1                                   | 100        | 100                             | 90%    |
|                                                                                                                            |                                            |                                                             | 1                                 | 1                                   | 100        | 100                             | 89%    |
| Volumetric variation confinement: surface protective<br>structure for high cyclic stability of lithium metal<br>electrodes | Al <sub>2</sub> O <sub>3</sub> nano-powder | 1 M LiPF <sub>6</sub> -EC/DMC + FEC                         | 0.5                               | 1                                   | 50         | 50                              | 97.60% |
| Interfacial Chemistry Regulation via a Skin-Grafting<br>Strategy Enables High-Performance Lithium-Metal<br>Batteries       | Surface protection                         | 1 M LiPF <sub>6</sub> -EC/EMC/FEC (3:7:1 vol.)              | 0.5                               | 1                                   | 200        | 200                             | 98%    |
| Electrochemical behaviors of a Li <sub>3</sub> N modified Li metal electrode in secondary lithium batteries                | Li <sub>3</sub> N film on Li metal         | 1 M LiPF6-EC/DMC (1:1 wt.)                                  | 0.5                               | 0.25                                | 80         | 20                              | 85%    |
| Stabilizing Li/Electrolyte Interface with a Transplantable<br>Protective Layer Based on Nanoscale LiF Domains              | Nanoscale LiF Lithium protection           | 1 M LiPF <sub>6</sub> -EC/EMC/DEC + 3% FEC                  | 0.5                               | 1                                   | 300        | 300                             | 98%    |
| Ultrathin Two-Dimensional Atomic Crystals as Stable                                                                        | Hexagonal boron nitride and                | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.)                    | 1                                 | 1                                   | 50         | 50                              | 93%    |
| Interfacial Layer for Improvement of Lithium Metal Anode                                                                   | graphene on Cu metal                       |                                                             | 1                                 | 3                                   | 50         | 150                             | 95%    |
|                                                                                                                            |                                            |                                                             | 1                                 | 5                                   | 50         | 250                             | 95%    |
| Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux<br>Distribution in Nanochannel Confinement                         | Polymide coating layer with nanochannels   | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.)                    | 1                                 | 1                                   | 40         | 40                              | 89%    |
| An Artificial Solid Electrolyte Interphase Layer for Stable<br>Lithium Metal Anodes                                        | Li <sub>3</sub> PO <sub>4</sub> layer      | 1 M LiPF <sub>6</sub> -EC/DMC/DEC (1:1:1 vol.)              |                                   | 1                                   | 10         | 10                              | 95%    |
| Regulating Li deposition at artificial solid electrolyte interphases                                                       | LiF coating                                | DOL/DME                                                     | 0.5                               | 1                                   | 90         | 90                              | 99%    |
| Coated Lithium Powder (CLiP) Electrodes for Lithium -<br>Metal Batteries                                                   | Coated lithium powder electrodes           | 1 M LiPF <sub>6</sub> -EC/DMC (1:1 vol.)                    | 0.885                             | 0.885                               | 100        | 88.5                            | 94.90% |
| High-Performance Lithium Metal Negative Electrode with<br>a Soft and Flowable Polymer Coating                              | Adaptive Polymer Coating                   | 1.0 m LiTFSI in DOL/DME with 1% LiNO <sub>3</sub>           | 1                                 | 1                                   | 180        | 180                             | 97%    |
| Lithium Metal Anodes with an Adaptive "Solid-Liquid"<br>Interfacial Protective Layer                                       | Coating                                    | 1 m LiTFSI in DOL/DME with 1% LiNO <sub>3</sub>             | 0.5                               | 1                                   | 120        | 120                             | 97.60% |
| Polymer Nanofiber-Guided Uniform Lithium Deposition                                                                        | PAN coating                                | 1 m LiTFSI in DOL/DME with 2% LiNO <sub>3</sub>             | 1                                 | 1                                   | 120        | 120                             | 97.9%  |

|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57                                                      | 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98.50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59                                                      | 295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 96.80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Slow release of LiNO3                                             | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98.30%<br>98.40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95.10%<br>98.30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92.70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93.70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92.20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Strategy                                                          | Electrolyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Current<br>(mA cm <sup>-2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Capacity<br>(mAh cm <sup>-2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cycle<br>#                                              | Cumulative<br>Capacity<br>(mAh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>_</b>                                                          | ator modification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                   | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| sheets<br>SiO <sub>2</sub> PMMA core shell<br>nanospheres         | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.)<br>SiO <sub>2</sub> core diameter 550 nm<br>PMMA thickness 20 nm                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                   | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.)<br>SiO <sub>2</sub> core diameter 550 nm<br>PMMA thickness 10 nm                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                   | SiO <sub>2</sub> core diameter 450 nm<br>PMMA thickness 20 nm                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                   | LIBOB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160                                                     | 1280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 98.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Reactive polymer composite<br>derived SEI + 3D graphene oxide     | $1 \text{ M LiPF}_6$ in EC/EMC (3:7 vol.) with 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 750                                                     | 1200<br>1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99.1%<br>99.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| metal anode                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94.2%<br>99.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chemically polished lithium                                       | 1 M LiPE, in EC/DEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A tin-plated copper substrate                                     | 1 M LiPF <sub>6</sub> in FEC/EMC 1:4                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150                                                     | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                   | ( */-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| organic/inorganic composite                                       | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.) + 0.1 M                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Zn Coating                                                        | 1M LiPF <sub>6</sub> FEC:TFEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                     | 100 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.1%<br>99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| interphase                                                        | (v/v=1:1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96.30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nanoporous $\gamma$ - Al <sub>2</sub> O <sub>3</sub><br>membranes | 1 m LiTFSI in DOL/DME with 1% LiNO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Polymer Coatings                                                  | 1 m LiTFSI in DOL/DME with 1% LiNO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99.13%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                   | Nanoporous γ - Al <sub>2</sub> O <sub>3</sub> membranes         mixed ionic/electronic conductor         interphase         Zn Coating         organic/inorganic composite         protective layer         ALD LiF coating         A tin-plated copper substrate         Chemically polished lithium         metal anode         Reactive polymer composite         derived SEI + 3D graphene oxide         sheets         SiO <sub>2</sub> PMMA core shell         nanospheres         Strategy | Nanoporous $\gamma$ - Al <sub>2</sub> O <sub>3</sub> I m LiTFSI in DOL/DME with 1% LiNO <sub>3</sub> membranes       I m LiTFSI in DOL/DME with 1% LiNO <sub>3</sub> mixed ionic/electronic conductor       1.0 M LiPF <sub>6</sub> in EC-DEC         interphase       I M LiPF <sub>6</sub> FEC:TFEC         organic/inorganic composite       1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.) + 0.1 M         protective layer       1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.) + 0.1 M         ALD LiF coating       1 m LiTFSI in DOL/DME with 2% LiNO <sub>3</sub> A tin-plated copper substrate       1 M LiPF <sub>6</sub> in FEC/EMC 1:4         Chemically polished lithium       1 M LiPF <sub>6</sub> in EC/EMC (3:7 vol.) with 2%         metal anode       1 M LiPF <sub>6</sub> in EC/EMC (3:7 vol.) with 2%         Reactive polymer composite       1 M LiPF <sub>6</sub> in EC/DEC (1:1 vol.)         sheets       1 M LiPF <sub>6</sub> EC/DEC (1:1 vol.)         SiO <sub>2</sub> PMMA core shell       1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.)         siO <sub>2</sub> core diameter 550 nm       PMMA thickness 10 nm         I M LiPF <sub>6</sub> -EC/DEC (1:1 vol.)       SiO <sub>2</sub> core diameter 550 nm         SiO <sub>2</sub> PMMA core shell       1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.)         siO <sub>2</sub> core diameter 550 nm       PMA4 thickness 10 nm         M LiPF <sub>6</sub> -EC/DEC (1:1 vol.)       SiO <sub>2</sub> core diameter 550 nm         SiO <sub>2</sub> core diameter 550 nm       PMA4 thickness 10 nm         MA thickness 10 nm       PMA4 thickness 10 nm | Nanoporous $\gamma$ · Al <sub>2</sub> O3<br>membranes1 m LiTFSI in DOL/DME with 1% LiNO30.5Nanoporous $\gamma$ · Al <sub>2</sub> O3<br>membranes1 m LiTFSI in DOL/DME with 1% LiNO30.5mixed ionic/electronic conductor<br>interphase1.0 M LiPF6 in EC-DEC<br>(vv=1:1)0.5Zn CoatingI M LiPF6 FEC:TFEC1organic/inorganic composite<br>protective layerI M LiPF6 FEC/DEC (1:1 vol.) + 0.1 M<br>Mn(NO3)23ALD LiF coatingI m LiTFSI in DOL/DME with 2% LiNO30.4A tin-plated copper substrateI M LiPF6 in FEC/EMC 1:40.5Chemically polished lithium<br>metal anode1 M LiPF6 in EC/DEC1Reactive polymer composite<br>derived SEI + 3D graphene oxide<br>sheets1 M LiPF6 in EC/EMC (3:7 vol.) with 2%<br>LiBOB21 M LiPF6 in EC/DEC (1:1 vol.)<br>SiO2 core diameter 450 nm<br>PMMA thickness 20 nm0.5SiO2 PMMA core shell<br>nanospheres1 M LiPF6-EC/DEC (1:1 vol.)<br>SiO2 core diameter 550 nm<br>PMMA thickness 20 nm0.5SiO2 PMMA core shell<br>nanospheres1 M LiPF6-EC/DEC (1:1 vol.)<br>SiO2 core diameter 550 nm<br>PMMA thickness 20 nm0.5SiO2 core diameter 550 nm<br>PMMA thickness 20 nm111 M LiPF6-EC/DEC (1:1 vol.)<br>SiO2 core diameter 550 nm<br>PMMA thickness 20 nm11 M LiPF6-EC/DEC (1:1 vol.)<br>SiO2 core diameter 550 nm<br>PMMA thickness 20 nm11 M LiPF6-EC/DEC (1:1 vol.)<br>SiO2 core diameter 550 nm<br>PMMA thickness 20 nm11 M LiPF6-EC/DEC (1:1 vol.)<br>SiO2 core diameter 550 nm<br>PMMA thickness 20 nm11 M LiPF6-EC/DEC (1:1 vol.)<br>SiO2 core diameter 550 nm<br>PMMA thickness 20 nm | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | Nanoporous Y - Al <sub>2</sub> O <sub>3</sub> Im LiTFSI in DOL/DME with 1% LiNO <sub>3</sub> 0.5         1         10           Nanoporous Y - Al <sub>2</sub> O <sub>3</sub> Im LiTFSI in DOL/DME with 1% LiNO <sub>3</sub> 0.5         0.25         300           mixed ionic/electronic conductor<br>interphase         1.0 M LiPF <sub>g</sub> in EC-DEC<br>(v(x=1:1)         0.5         1         50           Zn Coating         IM LiPF <sub>g</sub> FEC:TFEC         1         1         100           organic/inorganic composite<br>protective layer         1 M LiPF <sub>g</sub> FEC:TFEC         1         1         100           A tin-plated copper substrate         1 M LiPF <sub>g</sub> in EC/DEC         0.4         0.4         150           A tin-plated copper substrate         1 M LiPF <sub>g</sub> in EC/DEC         1         1         300           Reactive polymer composite<br>derived SEI + 3D graphene oxide<br>sheets         1 M LiPF <sub>g</sub> in EC/DEC (1:1 vol.)<br>SiO <sub>2</sub> core diameter 550 nm<br>PMMA thickness 20 nm         0.5         2         50           SiO <sub>2</sub> PMMA core shell<br>nanospheres         1 M LiPF <sub>g</sub> -EC/DEC (1:1 vol.)<br>SiO <sub>2</sub> core diameter 550 nm<br>PMMA thickness 10 nm         0.5         2         50           SiO <sub>2</sub> core diameter 550 nm<br>PMMA thickness 10 nm         1         2         50           SiO <sub>2</sub> core diameter 550 nm<br>PMMA thickness 10 nm         1         2         50           SiO <sub>2</sub> core diameter 550 nm<br>PMMA thickness 10 nm <td>Nanoprous Y         ALGO         1         10           Manoprous Y         1         In LiTFSI in DOL/DME with 1% LiNO<sub>3</sub>         0.5         0.25         300         75           mixed ionic/electronic conductor<br/>interphase         1.0 M LiPF<sub>0</sub> in EC-DEC<br/>(v/x=1:1)         0.5         1         50         50           Zn Coating         1 M LiPF<sub>0</sub> FEC:TFEC         1         1         100         100           organic/inorganic composite<br/>protective layer         1 M LiPF<sub>0</sub> FEC:TFEC         1         1         100         300           ALD LiF coating         1 m LiTFSI in DOL/DME with 2% LiNO<sub>3</sub>         0.4         0.4         150         60           A tin-plated copper substrate         1 M LiPF<sub>0</sub> in FEC/EMC 1:4         0.5         0.5         40         20           Chemically polished lithium<br/>metal anode         1 M LiPF<sub>0</sub> in FEC/EMC (3:7 vol.) with 2%         2         2         4         300         12000           derived SEI + 3D graphene oxide<br/>sheets         1 M LiPF<sub>0</sub> in EC/EMC (1: vol.)         0.5         2         50         100           SiO, PMMA core shell<br/>namoopheres         1 M LiPF<sub>0</sub> in EC/EC/EC (1: vol.)         0.5         2         50         100           SiO, PMMA core shell<br/>namoopheres         1 M LiPF<sub>0</sub> EC/DEC (1: vol.)         0.5</td> | Nanoprous Y         ALGO         1         10           Manoprous Y         1         In LiTFSI in DOL/DME with 1% LiNO <sub>3</sub> 0.5         0.25         300         75           mixed ionic/electronic conductor<br>interphase         1.0 M LiPF <sub>0</sub> in EC-DEC<br>(v/x=1:1)         0.5         1         50         50           Zn Coating         1 M LiPF <sub>0</sub> FEC:TFEC         1         1         100         100           organic/inorganic composite<br>protective layer         1 M LiPF <sub>0</sub> FEC:TFEC         1         1         100         300           ALD LiF coating         1 m LiTFSI in DOL/DME with 2% LiNO <sub>3</sub> 0.4         0.4         150         60           A tin-plated copper substrate         1 M LiPF <sub>0</sub> in FEC/EMC 1:4         0.5         0.5         40         20           Chemically polished lithium<br>metal anode         1 M LiPF <sub>0</sub> in FEC/EMC (3:7 vol.) with 2%         2         2         4         300         12000           derived SEI + 3D graphene oxide<br>sheets         1 M LiPF <sub>0</sub> in EC/EMC (1: vol.)         0.5         2         50         100           SiO, PMMA core shell<br>namoopheres         1 M LiPF <sub>0</sub> in EC/EC/EC (1: vol.)         0.5         2         50         100           SiO, PMMA core shell<br>namoopheres         1 M LiPF <sub>0</sub> EC/DEC (1: vol.)         0.5 |

| on a Separator                                                                                                                                                   |                                                             | 1 wt% VC                                                                                                                     | 1                                 | 1                                   | 100        | 100                             | 92.10% |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|------------|---------------------------------|--------|
|                                                                                                                                                                  |                                                             |                                                                                                                              | 0.25                              | 1                                   | 100        | 100                             | 94%    |
| A Thermally Conductive Separator for Stable Li Metal                                                                                                             | Separator coated with Boron<br>Nitride                      | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.)                                                                                     | 0.5                               | 1                                   | 100        | 100                             | 92%    |
| Anodes                                                                                                                                                           | Nuide                                                       |                                                                                                                              | 1                                 | 1                                   | 100        | 100                             | 88%    |
| A novel ZnO-based inorganic/organic bilayer with low resistance for Li metal protection                                                                          | PVDF-HFP/ZnO composite membrane                             | 1 M LiPF <sub>6</sub> in 1:1 EC:DMC with 3 wt% FEC)                                                                          | 0.5                               | 1                                   | 100        | 100                             | 95.7%  |
|                                                                                                                                                                  | Electro                                                     | lyte and additives                                                                                                           |                                   |                                     |            |                                 |        |
| Tile of literature                                                                                                                                               | Strategy                                                    | Electrolyte                                                                                                                  | Current<br>(mA cm <sup>-2</sup> ) | Capacity<br>(mAh cm <sup>-2</sup> ) | Cycle<br># | Cumulative<br>Capacity<br>(mAh) | CE     |
| Fluoroethylene Carbonate Additives to Render Uniform Li<br>Deposits in Lithium Metal Batteries                                                                   | FEC additives                                               | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.) + 5 vol% FEC                                                                        | 0.1                               | 0.5                                 | 100        | 50<br>50                        | 98%    |
| Synergism of Al-containing Solid Electrolyte Interphase<br>Layer and Al-based Colloidal Particles for Stable Lithium                                             | AlCl <sub>3</sub> additive                                  | 1 M LiPF <sub>6</sub> -EC/DMC/DEC (1:1:1 vol.) with AlCl <sub>3</sub> additive                                               | 0.5                               | 0.5                                 | 100        | 300                             | 90%    |
| Anode                                                                                                                                                            | - ,                                                         |                                                                                                                              |                                   |                                     | 240        |                                 | 0004   |
| In Situ Plating of Porous Mg Network Layer to Reinforce                                                                                                          | $Mg(TFSI)_2$ additive                                       | 1 M LiPF <sub>6</sub> -EC/DMC (1:1 vol.) + Mg(TFSI) <sub>2</sub>                                                             | 0.5                               | 1                                   | 240        | 240                             | 88%    |
| Anode Dendrite Suppression in Li-Metal Batteries                                                                                                                 |                                                             |                                                                                                                              | 1                                 | 2                                   | 130        | 260                             | 91%    |
|                                                                                                                                                                  |                                                             |                                                                                                                              | 2                                 | 4                                   | 50         | 200                             | 88%    |
| A promising bulky anion based lithium borate salt for lithium metal batteries                                                                                    | LiTFPFB salt                                                | 1 M LITFPHB-PC                                                                                                               | 0.5                               | 0.5                                 | 50         | 25                              | 80.60% |
| In-Situ Formation of Stable Interfacial Coating for High<br>Performance Lithium Metal Anodes                                                                     | Methyl viologen<br>hexafluorophosphate                      | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.) + 1 vol% VC +<br>10 vol% FEC + 0.5 wt% MV                                           | 2                                 | 2                                   | 92         | 184                             | 94.60% |
|                                                                                                                                                                  |                                                             | 1 M LiPF <sub>6</sub> -EC/DEC (1:1 vol.) + ODA-<br>functionalizd nanodiamond (0.41mg/mL)                                     | 0.5                               | 0.5                                 | 12         | 6                               | 96%    |
| Nanodiamonds suppress the growth of lithium dendrites                                                                                                            | Nanodiamonds                                                | 1 M LiPF6-EC/DEC (1:1 vol.) + ODA-<br>functionalizd nanodiamond (0.82mg/mL)                                                  | 0.5                               | 0.5                                 | 100        | 100                             | 96%    |
| A highly reversible room-temperature lithium metal battery<br>based on crosslinked hairy nanoparticles                                                           | Crosslinked-Nanoparticle-<br>Polymer-Composites electrolyte | CNPC in 1 M LiTFSI-PC + 1wt% LiNO <sub>3</sub> + 2<br>vol% VC                                                                | 0.25                              | 0.5                                 | 100        | 50                              | 97.5%  |
| Lithium Fluoride Additives for Stable Cycling of Lithium                                                                                                         | Addition of LiF salt                                        | 1 M LiPF <sub>6</sub> -EC/DMC + 0.5 wt% LiF                                                                                  | 0.25                              | 1                                   | 120        | 120                             | 90%    |
| Batteries at High Current Densities                                                                                                                              |                                                             |                                                                                                                              | 0.5                               | 1                                   | 120        | 120                             | 86%    |
| Guided Lithium Metal Deposition and Improved Lithium<br>Coulombic Efficiency through Synergistic Effects of<br>LiAsF <sub>6</sub> and Cyclic Carbonate Additives | LiAsF <sub>6</sub> + cyclic<br>carbonate additives          | 1 M LiPF <sub>6</sub> -PC + 2wt% VC + 2wt% LiAsF <sub>6</sub>                                                                | 0.2                               | 0.347222223                         | 10         | 3.47                            | 96.7%  |
| Dendrite - Free and Performance - Enhanced Lithium<br>Metal Batteries through Optimizing Solvent Compositions<br>and Adding Combinational Additives              | LiTFSI - LiBOB/ carbonate<br>dual - salt electrolyte        | $0.6 \text{ M LiTFSI} + 0.4 \text{ M LiBOB} + 0.6 \text{ wt% LiPF}_{6}$<br>+ 2.0 wt% VC + 2.0 wt% FEC in EC/EMC (7:3 by wt.) | 0.5                               | 1                                   | 10         | 10                              | 98.1%  |
| In Situ Scanning Vibrating Electrode Technique for<br>the Characterization of Interface Between Lithium<br>Electrode and Electrolytes Containing Additives       | AlI <sub>3</sub> additive                                   | 1 M LiClO <sub>4</sub> -PC + 100 ppm AlI <sub>3</sub> + 0.5vol% 2-<br>methylfuran                                            | 2                                 | 0.055555556                         | 20         | 1.11111112                      | 94%    |
| Lithium metal protection through in-situ formed solid<br>electrolyte interphase in lithium-sulfur batteries: The role<br>of polysulfides on lithium anode        | Polysulfides                                                | 0.1 M Li <sub>2</sub> S <sub>5</sub> + 5% LiNO <sub>3</sub> in 1 M LiTFSI in DOL/DME                                         | 1                                 | 1                                   | 200        | 200                             | 97%    |
| Lithium metal stripping/plating mechanisms studies: A metallurgical approach                                                                                     | Pressure                                                    | 1 M LiPF <sub>6</sub> -EC/DMC (1:1 vol.)                                                                                     |                                   | 2.7                                 | 10         | 27                              | 90%    |
| Effects of Some Organic Additives on Lithium Deposition<br>in Propylene Carbonate                                                                                | FEC Additive                                                | 1 M LiClO <sub>4</sub> -PC + 5% FEC                                                                                          | 0.5                               | 0.083333333                         | 30         | 2.5                             | 80%    |
| A bifunctional electrolyte additive for separator wetting<br>and dendrite suppression in lithium metal batteries                                                 | Triblock polyether<br>additive                              | 1 M LiPF <sub>6</sub> -PC + 0.2% P123                                                                                        |                                   | 1                                   | 50         | 50                              | 40%    |
| Surface Condition Changes in Lithium Metal Deposited in<br>Nonaqueous Electrolyte Containing HF by Dissolution-<br>Deposition Cycles                             | HF additive                                                 | $1 \text{ M LiCF}_3\text{SO}_3\text{-PC} + 20 \text{ mM HF} + 27 \text{ mM H}_2\text{O}$                                     |                                   | 1                                   | 100        | 100                             | 60%    |
| In situ scanning vibrating electrode technique for lithium                                                                                                       | SnI <sub>2</sub> additive                                   | 1 M LiClO <sub>4</sub> -PC/2Me-THF + 200 ppm SnI <sub>2</sub>                                                                | 2                                 | 0.2                                 | 20         | 4                               | 80     |

| metal anodes                                                                                                                                                                                        |                                                                                                             |                                                                                                     |      |             |      |            |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------|-------------|------|------------|--------|
| Electrochemical deposition of lithium metal in nonaqueous electrolyte containing (C <sub>2</sub> H <sub>5</sub> ) <sub>4</sub> NF(HF) <sub>4</sub> additive                                         | $(C_2H_5)_4NF(HF)_4$ additive                                                                               | 1 M LiCF <sub>3</sub> SO <sub>3</sub> -PC                                                           | 1    | 1           | 35   | 35         | 80%    |
| The correlation between the cycling efficiency, surface<br>chemistry and morphology of Li electrodes in electrolyte<br>solutions based on methyl formate                                            | Methyl formate<br>solution and CO <sub>2</sub>                                                              | 1 M LiAsF <sub>6</sub> in DEC + methyl formate (0.5 vol.) under 6 atm $CO_2$                        | 1    | 1.25        | 20   | 25         | 97.5%  |
| Enhanced cyclability and surface characteristics of lithium<br>batteries by Li–Mg co-deposition and addition of HF acid<br>in electrolyte                                                           | Mg co-deposition and addition of HF acid                                                                    | 1 M LiPF <sub>6</sub> -EC/DEC/DME + 0.05 M Mg(ClO <sub>4</sub> ) <sub>2</sub> + 0.3 ppm HF          | 1    | 0.4         | 100  | 40         | 50%    |
| AC imepedance behaviour of lithium electrode in organic electrolyte solutions containing additives                                                                                                  | Benzene additive                                                                                            | PC + 5 vol% benzene                                                                                 | 1    | 0.1         | 20   | 2          | 78%    |
| Concentrated dual-salt electrolytes for improving the<br>cycling stability of lithium metal anodes                                                                                                  | Concentrated dual-salt<br>electrolytes                                                                      | 1M LiFSI +2M LiTFSI in DOL/DME                                                                      | 0.5  | 1           | 200  | 200        | 97.7%  |
| Novel Concentrated Li[(FSO <sub>2</sub> )(n-C <sub>4</sub> F <sub>9</sub> SO <sub>2</sub> )N]-Based Ether<br>Electrolyte for Superior Stability of Metallic Lithium<br>Anode                        | Concentrated ether electrolyte                                                                              | 3 M LiFNSI in DOL/DME                                                                               | 0.5  | 1           | 180  | 180        | 97%    |
| Novel dual-salts electrolyte solution for dendrite-free<br>lithium-metal based rechargeable batteries with high cycle<br>reversibility                                                              | Dual-salts electrolyte                                                                                      | 0.5 M LiTFSI + 0.5 M LiFSI in DOL/DME                                                               | 0.25 | 0.625       | 120  | 75         | 99%    |
| $Li_2S_5$ -based ternary-salt electrolyte for robust lithium metal anode                                                                                                                            | Ternary-salt electrolyte                                                                                    | Li <sub>2</sub> S <sub>5</sub> ([S]=0.10 M)–LiNO <sub>3</sub> (1.0 wt%, ~0.15 M)–<br>LiTFSI (1.0 M) | 0.5  | 0.5         | 100  | 50         | 95%    |
| The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth                                                                                                 | Lithium polysulfide and lithium nitrate                                                                     | 0.18 M Li <sub>2</sub> S <sub>8</sub> + 5 wt% LiNO <sub>3</sub> in DOL/DME                          | 2    | 1           | 400  | 400        | 99.1%  |
|                                                                                                                                                                                                     |                                                                                                             | 4 M LiFSI-DME                                                                                       | 0.2  | 0.5         | 500  | 250        | 99.1%  |
| High rate and stable cycling of lithium metal anode                                                                                                                                                 | High concentration electrolyte                                                                              |                                                                                                     | 1    | 0.5         | 500  | 250        | 98.5%  |
|                                                                                                                                                                                                     |                                                                                                             |                                                                                                     | 4    | 0.5         | 1000 | 500        | 98.4%  |
|                                                                                                                                                                                                     |                                                                                                             |                                                                                                     | 10   | 0.5         | 500  | 250        | 97%    |
| Solubility-mediated sustained release enabling nitrate<br>additive in carbonate electrolytes for stable lithium metal<br>anode                                                                      | nitrate nanoparticles encapsulated<br>in porous polymer gel                                                 | 0.5 M LiPF <sub>6</sub> in EC/DEC                                                                   | 1    | 1           | 200  | 200        | 98.1%  |
| Passivation of Lithium Metal Anode via Hybrid Ionic<br>Liquid Electrolyte toward Stable Li Plating/Stripping                                                                                        | Hybrid Ionic Liquid Electrolyte                                                                             | 2 M LiTFSI/Py13TFSI +<br>DOL/DME                                                                    | 0.5  | 1           | 360  | 360        | 99.10% |
| Dual - Layered Film Protected Lithium Metal Anode to<br>Enable Dendrite - Free Lithium Deposition                                                                                                   | FEC                                                                                                         | 1 M LiPF <sub>6</sub> -FEC                                                                          | 1    | 1           | 10   | 10         | 98.3%  |
| Electrode Edge Effects and Failure Mechanism of Lithium Metal Batteries                                                                                                                             | High concentration<br>electrolyte + no edge effect                                                          | LiFSI/DMC/BTFE=0.51:1.1:2.2<br>by mol.                                                              | 0.5  | 1           | 10   | 10         | 99.4%  |
|                                                                                                                                                                                                     |                                                                                                             | 1.5 M LiAsF <sub>6</sub> -PC                                                                        | 1.5  | 0.173611111 | 10   | 1.73611111 | 85%    |
| The behaviour of lithium electrodes in propylene and                                                                                                                                                |                                                                                                             | 1.5 M LiAsF <sub>6</sub> -PC + CO <sub>2</sub> saturation                                           | 1.5  | 0.173611111 | 10   | 1.73611111 | 93%    |
| ethylene carbonate: The major factors that influence Li cycling efficiency                                                                                                                          | Electrolyte Additives                                                                                       | 1.5 M LiAsF <sub>6</sub> -PC + storage over Al <sub>2</sub> O <sub>3</sub>                          | 1.5  | 0.173611111 | 10   | 1.73611111 | 96%    |
| Engineering Solid Electrolyte Interphase in Lithium Metal<br>Batteries by Employing an Ionic Liquid Ether Double-<br>Solvent Electrolyte with $\text{Li}[(CF_3SO_2)(n-C_4F_9SO_2)N]$ as the<br>Salt | Electrolyte Additives                                                                                       | 1 M TNFSI in DOL/PI13FSI                                                                            | 0.5  | 1           | 300  | 300        | 98.70% |
| Tuning the electrolyte network structure to invoke quasi-<br>solid state sulfur conversion and suppress lithium dendrite<br>formation in Li–S batteries                                             | Decreasing the solvent/salt molar ratio                                                                     | G2:LiTFSI (0.8:1)                                                                                   | 1    | 1           | 200  | 200        | 96.20% |
| A LiPO <sub>2</sub> F <sub>2</sub> /LiFSI dual-salt electrolyte enabled stable cycling of lithium metal batteries                                                                                   | Dual salt                                                                                                   | 0.5 M LiFSI+0.5 M LiPO <sub>2</sub> F <sub>2</sub> /DME                                             | 0.5  | 1           | 150  | 150        | 96.40% |
| (CH <sub>3</sub> ) <sub>3</sub> Si-N[(FSO <sub>2</sub> )(n-C <sub>4</sub> F <sub>9</sub> SO <sub>2</sub> )]: An additive for dendrite-                                                              | (CH <sub>3</sub> ) <sub>3</sub> Si-N[(FSO <sub>2</sub> )(n-C <sub>4</sub> F <sub>9</sub> SO <sub>2</sub> )] | 1 M LiTFSI in DOL/DME with 5wt% TMS-                                                                | 0.25 | 0.5         | 200  | 100        | 98.60% |
| free lithium metal anode                                                                                                                                                                            |                                                                                                             | FNFSI                                                                                               | 0.5  | 1           | 100  | 100        | 97.30% |
|                                                                                                                                                                                                     |                                                                                                             |                                                                                                     | 1    | 2           | 100  | 200        | 96.50% |
|                                                                                                                                                                                                     |                                                                                                             | 2.5 M LiTFSI in DMC-BTFE                                                                            | 0.5  | 1           | 100  | 10         | 99.5%  |
|                                                                                                                                                                                                     |                                                                                                             | 2.5 M EITOI III DINC DITE                                                                           | 0.5  | 1           | 10   | 10         | 77.370 |

|                                                                                                                                                          | Localized high concentration electrolytes            |                                                             | 0.5  | 1          | 10  | 10    | 99.3%         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|------|------------|-----|-------|---------------|
| High Voltage Lithium Metal Batteries Enabled by<br>Localized High Concentration Electrolytes                                                             |                                                      | 1.2 M LiTFSI in DMC-BTFE                                    | 1    | 1          | 10  | 10    | 99.4%         |
| Localized High Concentration Electrolytes                                                                                                                |                                                      | 1.2 M LITESI III DMC-BIFE                                   | 3    | 1          | 10  | 10    | 98.9%         |
|                                                                                                                                                          |                                                      |                                                             | 5    | 1          | 10  | 10    | 92.6%         |
|                                                                                                                                                          |                                                      |                                                             | 0.5  | 1          | 200 | 200   | 99%           |
| A Localized High-Concentration Electrolyte with<br>Optimized Solvents and Lithium Difluoro(oxalate)borate<br>Additive for Stable Lithium Metal Batteries | Localized high concentration electrolytes            | 1.2 M LiFSI in EC/EMC with BTFE + 0.15M<br>LiDFOB           | 0.5  | 1          | 200 | 200   | 98.5%         |
| Localized High-Concentration Sulfone Electrolytes for<br>High-Efficiency Lithium-Metal Batteries                                                         | Localized High-Concentration<br>Sulfone Electrolytes | LiFSI-3TMS-3TTE                                             | 0.5  | 1          | 150 | 150   | 98.80%        |
|                                                                                                                                                          |                                                      |                                                             | 0.5  | 1          | 10  | 10    | 99.2%         |
| High-Efficiency Lithium Metal Batteries with                                                                                                             | fire-retardant localized high-                       | 1.2 M LiFSI/TEP-BTFE, 1:3 by mol                            | 1    | 1          | 10  | 10    | 99.2%         |
| Fire-Retardant Electrolytes                                                                                                                              | concentration electrolyte                            |                                                             | 2    | 1          | 10  | 10    | 98.9%         |
|                                                                                                                                                          |                                                      |                                                             | 3    | 1          | 10  | 10    | 98.5%         |
| Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization                   | Localized high concentration electrolytes            | 1 M LiFSI/DME-TFEO                                          | 0.5  | 1          | 10  | 10    | 99.5%         |
| Enabling High-Voltage Lithium-Metal Batteries under<br>Practical Conditions                                                                              | Localized high concentration electrolytes            | LiFSI-1.2DME-3TTE                                           | 0.5  | 1          | 300 | 300   | 99.3%         |
| Lithium Difluorophosphate as a Dendrite-Suppressing<br>Additive for Lithium Metal Batteries                                                              | Lithium Difluorophosphate                            | 1 M LiPF <sub>6</sub> in EC/DEC + 0.15M LiDFP               | 1    | 1          | 40  | 40    | 98.3%         |
| Combinatorial Methods for Improving Lithium Metal<br>Cycling Efficiency                                                                                  | Electrolyte                                          | 1M LiPF <sub>6</sub> FEC:TFEC                               | 0.6  | 0.44444445 | 50  | 22.22 | 75%           |
|                                                                                                                                                          |                                                      | 7 m LiFSI in FEC                                            | 0.25 | 0.5        | 400 | 200   | 99.6%<br>max  |
| Fluorine-donating electrolytes enable highly reversible 5-<br>V-class Li metal batteries                                                                 | Fluorine-donating electrolytes                       | rolytes                                                     | 0.5  | 0.5        | 350 | 175   | 98.37%<br>max |
|                                                                                                                                                          |                                                      |                                                             | 1    | 0.5        | 300 | 150   | 98.02%<br>max |
| Non-flammable electrolyte enables Li-metal                                                                                                               | non-flammable fluorinated                            | 1 M LiPF <sub>6</sub> in FEC/FEMC/HFE                       | 0.2  | 1          | 500 | 500   | 99.2%         |
| batteries with aggressive cathode chemistries                                                                                                            | electrolyte                                          | [                                                           | 0.5  | 2          | 400 | 800   | 99%           |
|                                                                                                                                                          |                                                      | 1M LiPF <sub>6</sub> -EC/DMC/DEC<br>(1:1:1 vol.) + 2 wt% VC | 0.6  | 0.44444445 | 50  | 22.22 | 75%           |
| Effect of vinylene carbonate as additive to electrolyte for                                                                                              | VC additive                                          | 1M LiBETI-EC/DMC/DEC<br>(1:1:1 vol.) + 2 wt% VC             | 0.6  | 0.44444445 | 50  | 22.22 | 86%           |
| lithium metal anode                                                                                                                                      |                                                      | 1 M LiTFSI-EC/DMC (1:1 vol.) +2 wt% VC                      | 0.6  | 0.44444445 | 50  | 22.22 | 82%           |
|                                                                                                                                                          |                                                      | 1 M LiBF <sub>4</sub> -EC/DMC (1:1 vol.) +2 wt% VC          | 0.6  | 0.44444445 | 50  | 22.22 | 80%           |

| Cell component | Cell parameters                                      |       |
|----------------|------------------------------------------------------|-------|
|                | discharge capacity (mAh g <sup>-1</sup> )            | 694   |
|                | active material Loading                              | 90%   |
| Cathode        | total coating weight (mg cm <sup>-2</sup> each side) | 8.0   |
| Cathode        | area Capacity (mAh cm <sup>-2</sup> each side)       | 5     |
|                | Al foil thickness (um)                               | 15    |
|                | number of double coated layers                       | 16    |
|                | cell balance (N/P ratio)                             | 1     |
| Li Anode       | electrode thickness (single side) (um)               | 50    |
|                | Cu foil thickness (um)                               | 8     |
| Electrolyte    | electrolyte/capacity (g Ah <sup>-1</sup> )           | 2     |
|                | weight (g)                                           | 6.192 |
| Separator      | Thickness (um)                                       | 20    |
|                | voltage (V)                                          | 1.8   |
| Cell           | capacity (mAh)                                       | 3096  |
|                | energy density (Wh kg <sup>-1</sup> )                | 307   |