# Supporting Information: Selective gas capture via kinetic trapping

Joyjit Kundu,\* Tod Pascal, David Prendergast and Stephen Whitelam<sup>‡</sup>

## S1 Simulation details

Eq. (1) of the main text follows from the condition of detailed balance applied to our Monte Carlo protocol. In general, we consider gas mixtures of variable composition, and specialize in the main text to the case of an equimolar mixture. The sum of rates of all microscopic process is  $R \equiv L_y R_i + n_0 R_r + n R_d$ , where  $L_y$  is the number of sites in the left-most column z = 0 of the lattice,  $n_0$  is the instantaneous number of particles on the left-most column, and n is the instantaneous total number of particles on the lattice. To enforce detailed balance we consider the interconversion of microstates A and B. Detailed balance requires

$$p(\mathbf{A}) \ p_{\text{gen}}(\mathbf{A} \to \mathbf{B}) \ p_{\text{acc}}(\mathbf{A} \to \mathbf{B}) = p(\mathbf{B}) \ p_{\text{gen}}(\mathbf{B} \to \mathbf{A}) \ p_{\text{acc}}(\mathbf{B} \to \mathbf{A}).$$
(S1)

Here  $p(i) \propto \exp(-\beta U_i) \prod_j z_j^{n_j}$  is the equilibrium probability of being in microstate *i* with energy  $U_i$ , where  $n_j$  is the number of particles of gas type  $j \in \{H_2, CO_2, H_2O\}$  in microstate *i*, and  $z_j = \exp(\mu_j/k_BT)$  is the fugacity of gas type *j*.  $p_{gen}$  and  $p_{acc}$  are the probabilities of generating and accepting a proposed move.

We choose to attempt diffusion moves with probability  $nR_d/R$ . We then choose a particle uniformly from all *n* particles in the system, and propose to move it to one of its four nearest-neighbor sites. The probability of generating a diffusion move is then  $p_{gen} = R_d/(4R)$ . From (S1) we can solve for the acceptance rate for a diffusion move,

$$p_{\rm acc} = \min\left(1, \frac{R_{\rm before}}{R_{\rm after}} e^{-\beta\Delta U}\right).$$
 (S2)

Here  $\Delta U$  is the energy difference between the final and initial microstates, and  $R_{\text{before}}$  and  $R_{\text{after}}$  are the values of  $R \equiv L_y R_i + n_0 R_r + n R_d$  before and after the proposed move.

For insertion-removal moves we proceed as follows. We attempt an insertion move with probability  $L_y R_i/R(A)$ , where R(A) is the total rate calculated in microstate A. A specific site is chosen among  $L_y$  sites at random from the left-most column with probability  $1/L_y$ . We then propose to insert a particle of type j with probability  $z_j/\sum_m z_m$ , where the sum runs over all gas types. Thus the probability of generating the insertion move is  $p_{gen}(A \to B) = R_i z_j/(R(A) \sum_m z_m)$ .

We attempt a removal move with probability  $n_0 R_r/R(B)$ , where R(B) is the total rate calculated in microstate B. A specific particle among  $n_0$  particles in the left-most column is chosen with probability  $1/n_0$ . The probability of generating the removal move is then  $p_{\text{gen}}(B \rightarrow A) = R_r/R(B)$ . Noting that microstate B contains one more particle of type *j* than microstate A, we have from (S1) that

$$\frac{p_{\rm acc}(A \to B)}{p_{\rm acc}(B \to A)} = \frac{R(A)}{R(B)} e^{-\beta \Delta U} \frac{R_{\rm r}}{R_{\rm i}} \sum_m z_m.$$
(S3)

We further set  $\sum_m z_m R_r/R_i = 1$  so that the acceptance rates for insertion and removal moves have the form given in (S2). In the main text we consider the case of an equimolar gas mixture, for which all fugacities  $z_j$  are the same, and thus, we set  $3z_jR_i/R_r = 1$ .

In this supplement we present simulation reults for non-equimolar gas mixtures. The composition of a post-combustion flue gas depends on the particulars of the power plant. Often it consists of 70-75% N<sub>2</sub>, 12-15% CO<sub>2</sub>, 5-7% H<sub>2</sub>O, and small amounts of SO<sub>2</sub>, NO<sub>x</sub>, O<sub>2</sub>, CO, etc. H<sub>2</sub> is an important constituent of pre-combustion flue gas, and for Mg-MOF-74 occupies the same position as N<sub>2</sub> in the hierarchy of binding enthalpies and diffusion barriers with respect to CO<sub>2</sub> and H<sub>2</sub>O. Fig. S1(a) and (b) present the density of CO<sub>2</sub> as a function of time and temperature for an equimolar gas mixture, while in Fig. S1(c) we show a time-temperature plot for the density of CO<sub>2</sub> when the model framework is exposed to a gas mixture with composition 75% H<sub>2</sub>, 15% CO<sub>2</sub> and 10% H<sub>2</sub>O. For these simulations  $z_{H_2}:z_{CO_2}:z_{H_2O}=75:15:10$ . Our qualitative conclusions are as for the equimolar case: CO<sub>2</sub> can be captured, in abundance, under nonequilibrium conditions.

## S2 Estimate of the basic time scale $\Delta t$ of the model

We determined the basic timescale of our model by comparison with experiment as follows. We set up a simulation to mimic an experiment in which  $H_2O$  is passed through Mg-MOF-74 preloaded with bound  $CO_2^{-1}$ . We measured the time taken by  $H_2O$  to displace

Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; \* E-mail: jkundu@lbl.gov, \* E-mail: swhitelam@lbl.gov



**Fig. S1** Bound CO<sub>2</sub> fraction as a function of time *t* (in units of  $\Delta t$ ), for simulations run at a range of temperature *T*. In panel (a), the values of intra-species pairwise nearest-neighbor repulsive interactions are 0.0025 eV, 0.02 eV, or 0.03 eV for H<sub>2</sub>, CO<sub>2</sub> or H<sub>2</sub>O, respectively<sup>3</sup>. Inter-species interactions are chosen to be the arithmetic mean of the corresponding intra-species interactions. In panel (b), inter-species interactions are set to zero. In both the cases the framework was in contact with a reservoir of an equimolar gas mixture. In panel (c), the reservoir contains a mixture of 75% H<sub>2</sub>, 15% CO<sub>2</sub> and 10% H<sub>2</sub>O. Here, the inter-species interactions are the same as those used in panel (a). The data are for  $L_y = 40$  and  $L_z = 80$ .

CO<sub>2</sub>. We started the simulation with all binding sites of the framework occupied by CO<sub>2</sub>, and then exposed the framework to H<sub>2</sub>O. As time progresses, H<sub>2</sub>O displaces CO<sub>2</sub>, as shown in Fig. S2(a). We define the equilibration time as the time when the bound fraction of H<sub>2</sub>O is 99%. Fig. S2(b) shows the equilibration time  $\tau_{eq}$  as a function of  $L_z$  at different temperatures. These data can be fit by the equation

$$\tau_{eq}(T) = A(T) + B(T) L_z^{\nu(T)}.$$
(S4)

We summarize the values of A, B and v at different temperatures, obtained by fitting the simulation data with Eq. S4, in table 1. We find that  $v \approx 2$ . In the experiment with a sample of thickness 40  $\mu$ m, H<sub>2</sub>O adsorption was found to reach equilibrium after  $\sim 210$  s at

| T (K) | А                    | В     | ν    |
|-------|----------------------|-------|------|
| 523   | $1.26 \times 10^{6}$ | 8.87  | 2.05 |
| 493   | $2.53 \times 10^{6}$ | 15.49 | 1.97 |
| 463   | $5.57 \times 10^{6}$ | 17.94 | 1.96 |
| 433   | $1.46 \times 10^{7}$ | 10.02 | 2.05 |
| 403   | $4.41 \times 10^{7}$ | 2.21  | 2.26 |
| 348   | $5.15 \times 10^{8}$ |       |      |

Table 1 Values of A, B and v at different temperatures, measured by fitting the simulation data with Eq. S4.

348 K<sup>1</sup>. Such lengthscales and timescales are out of reach of our simulations, but by extrapolation we can compare those experiments with our results. At 348 K we can estimate the value of  $A(\approx 5.15 \times 10^8)$  by extrapolation: see inset of Fig. S2(a). Using Eq. (S4) and all combinations of B and v for the different temperatures listed in table 1, we find that the choice  $\Delta t \sim 10^{-10}$  s gives the range  $\tau_{eq}(348 \text{ K}) \approx 76 - 405 \text{ s}$ , which encompasses the experimental value of 210 s. The value of  $\Delta t$  is physically reasonable: it is close to the measured self-diffusion time of CO<sub>2</sub> in Mg-MOF-74, which is  $\sim 10^{-10}$ – $10^{-9}$  s<sup>2</sup>. By comparison, the the self-diffusion time of CO<sub>2</sub> in air is  $\sim 10^{-16}$ – $10^{-15}$  s.

### S3 Polydispersity of grain size and nonequilibrium gas capture

In Fig. S4(a) and Fig. S5, we show that nonequilibrium gas capture can be effected in a MOF powder whose grains possess a distribution of sizes. Fig. S4(a) shows the bound fraction of CO<sub>2</sub> ( $\rho_{CO_2}$ ) as a function of time for different values of  $L_z$  at 328 K. The data for the time  $\tau_{0.5}$  at which  $\rho_{CO_2}$  decays to a value of 0.5, after attaining its maximum value, are plotted against  $L_z$  in Fig. S4(b). These data can be fit, at 328 K, by  $\tau_{0.5} = C + D L_z^m$ , where  $C \approx 7.45 \times 10^7$ ,  $D \approx 87.71$  and  $m \approx 1.77$ . Using this fit we can predict the time window within which CO<sub>2</sub> can be captured by a framework. Our results suggest that at 298 K, a framework of length  $L_z = L_c \approx 0.43 \ \mu\text{m}$ , exposed to an equimolar mixture of the three gas types considered here, will harbor CO<sub>2</sub> at more than 40% of its binding sites up to a time of  $\sim 0.1$  s. Here,  $C(298 \text{ K}) \approx 1.15 \times 10^9$ : see Fig. S4(c), as obtained from simulations at 298 K and the values *D*, *m* are considered to be same as those at 328K.

#### References

1 K. Tan, S. Zuluaga, Q. Gong, Y. Gao, N. Nijem, J. Li, T. Thonhauser, and Y. J. Chabal, Chem. Mater. 27, 2203 (2015).



**Fig. S2** We fix the basic time scale  $\Delta t$  of our model by comparing the equilibration time in simulation with that measured in an experiment in which a framework pre-loaded with CO<sub>2</sub> is exposed to H<sub>2</sub>O<sup>1</sup>. (a) Time evolution of the bound fraction of CO<sub>2</sub> and H<sub>2</sub>O at 348 K for  $L_z = 800$ . Inset: equilibration time  $\tau_{eq}$  as a function of  $L_z$  at 348 K. (b) Equilibration time  $\tau_{eq}$  as a function of  $L_z$  at different temperatures. Data points are obtained from simulations. Solid lines are fits to the data using  $\tau_{eq}(T) = A(T) + B(T) L_z^{V(T)}$ . The values of A(T), B(T), and v(T) at different temperatures are listed in table 1. The data are averaged over 100 independent simulations and are for  $L_y = 10$ .



**Fig. S3** Simulation results are largely insensitive to the lateral extent  $L_y$  of the framework, because motion along channels is effectively one dimensional. We plot  $\rho_{CO_2}$  as a function of time *t* (in units of  $\Delta t$ ) for three different values of  $L_y$  ( $L_z = 80$ ) at 388 K, averaged over 100 independent runs.



**Fig. S4** We can predict the timescale of CO<sub>2</sub> capture, for fixed  $L_z$ , under nonequilibrium conditions. (a) Time evolution of  $\rho_{CO_2}$ , the bound fraction of CO<sub>2</sub> at 328 K for different  $L_z$ . The horizontal line corresponds to  $\rho_{CO_2} = 0.5$ . (b) The time at which  $\rho_{CO_2}$  decays to 0.5 as a function of the linear extent of the framework along *z* at 328 K. The data points are obtained from simulations; the solid line is a fit to the data and follows the equation  $\tau_{0.5} = C + D L_z^m$ , where  $C \approx 7.45 \times 10^7$ ,  $D \approx 87.71$  and  $m \approx 1.77$ . (c) Time evolution of  $\rho_{CO_2}$  at 298 K for four different system sizes. We find  $C(298 \text{ K}) \approx 1.15 \times 10^9 \text{ by}$  extrapolation. Being unable to go up to larger system sizes, we consider that the value of *D* and *m* at 298 K are same as those for 328 K. The data are averaged over 80 independent simulations and are for  $L_y = 10$ .

- 2 Z. Bao, L. Yu, Q. Ren, X. Lu, and S. Deng, J. Colloid Interface Sci. 353, 549 (2011).
- 3 P. Canepa, N. Nijem, Y. J. Chabal, and T. Thonhauser, Phys. Rev. Lett. 110, 026102 (2013).



**Fig. S5** The total amount of bound CO<sub>2</sub> under nonequilibrium conditions at a given time depends on  $L_z$ . We show the fraction of binding sites occupied by CO<sub>2</sub> as a function of  $L_z$  at six different times, for T = (a) 328 K, (b) 388 K and (c) 463 K. Here  $t_1 < t_2 < t_3 < t_4 < t_5 < t_6$ . The data, averaged over 200 independent runs, are for  $L_y = 40$ . At any temperature T,  $t_1$  and  $t_6$  represent times before and after  $\rho_{CO_2}$  reaches its maximum respectively for any  $L_z$ . For all the three temperatures,  $t_1 \approx 10^4$  (in units of  $\Delta t$ ).  $t_6 \approx 3.5 \times 10^6$ ,  $3.0 \times 10^6$  and  $2.4 \times 10^4$  (in units of  $\Delta t$ ) when T = 328 K, 388 K and 463 K respectively.