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1. COMPUTATIONAL METHODS 

a. Description of system 
We created supercells of graphene sheets by replicating the fundamental unit cell by 9 x 16, to a 2D 

periodic sheet of 38.4 x 39.5 Å2 (586 atoms). Multi-sheet structures were created assuming a 3.33Å sheet-

sheet separation. Composite systems were created by encapsulating a box of 4353 water molecules, 

described with the rigid TIP4P-2005 forcefield1, pre-equilibrated from 10ns constant pressure (1bar), 

constant temperature (298K) MD simulations using LAMMPS MD simulation engine2. In these pre-

equilibration simulations, the x and y dimensions were fixed to be commensurate to the graphene sheet 

dimensions, while the z-dimension was adjusted to achieve a 1 g/cm3 density, resulting in a final z 

dimension of 93.06Å. We allowed for a 2.0Å buffer between the topmost graphene sheet and the water 

surface. Finally, we inflated the box in the z-direction by 2nm, in order to simulate a vacuum on either 

side of our graphene sheets. 

b. Equilibrium MD Simulations 
We subjected each of the initial systems to long-term MD simulations with an additional force of ±0.022 

kcal/mol/Å added to the top and bottom sheets respectively, in order to simulate 1atm of external 

pressure. The graphene sheets were described with the QMFF-Cx forcefield3. The water–carbon van der 

Waals interactions were determined using the optimized parameter set from Werder et al.4. We then 

performed 2D periodic (x and y dimension) equilibrium MD simulations using LAMMPS. The top and 

bottom of the simulation box were bounded by a purely repulsive wall. In order to remove spurious 

interactions between the two surfaces, we employed the 2D slab corrections of Yeh and Berkowitz5 with a 

further 3.0 z-factor.  

We initially minimized the forces in each system using the conjugate gradient minimization scheme with 

an energy tolerance of 10-4 and a force tolerance of 10-5. We then slowly heated the system from 0 K to 

298 K over 100 ps in the constant volume, constant temperature NVT (canonical) ensemble, using a 

Nose-Hoover thermostat (temperature relaxation constant of 100 fs). The equations of motion were 

integrated by means of the velocity verlet algorithm in a 1 fs timestep. We truncated the van der Waals 

forces at an outer cutoff of 1.2 nm and an inner cutoff of 1.1 nm, between which we employed a cubic 

spline to guarantee zero energy and forces at the outer cutoff. We truncated the short-range electrostatic 

interactions at 1.2 nm and evaluated the long-range electrostatics using the 2D-PPPM method6 with a k-

space tolerance of 10-6 kcal/mol.  

After initial equilibration, we annealed the system by cycling the temperature 5 times between 298 K and 

550 K over 30 ps, followed by a further 100 ps of NVT dynamics at 298 K. We resolved any x and y 

stresses in the system by means of 1ns of constant pressure, constant temperature (NPT) simulations 

using the Andersen barostat (pressure relaxation constant of 1 ps). The equations of motion used are those 

of Shinoda et al.7, which combine the hydrostatic equations of Martyna et al.8 with the strain energy 

proposed by Parrinello and Rahman9. The time integration schemes closely follow the time-reversible 

measure-preserving Verlet integrators derived by Tuckerman et al.10. During the last 500 ps of the 1 ns 

NPT simulation, we calculated the average x and y cell lengths and adjusted the final NPT simulation cell 

linearly to the averages over a further 100 ps of dynamics. Finally, we performed 30 cycles of NVT 

dynamics, where the temperature was cycled from 298 K to 550 K over 250 ps, followed by 250 ps of 

NVT simulation at 298 K. We saved snapshots of the system (atomic position and velocities) every 10 ps.  

c. Thermodynamics calculations 
We saved a restart file after each cycle and used a starting point for an additional 25 ps of NVT dynamics, 

saving the atomic positions and velocities every 2 fs. We then calculated the system thermodynamics 
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using an external code that implements the 2PT method. In each 2PT calculation, we took the effective 

volume of the nanoconfined water molecules to be an enclosed volume with z = D – 3.75Å, which 

accounts for the carbon–water van der Waals exclusion zone. We obtained the mean and standard 

deviation in our calculated thermodynamics and DoS functions from statistical averaging over the 2PT 

results of all 30 snapshots for each system. We also performed reference simulations of the bulk liquids 

(Table S2) and the thermodynamics evaluated using the 2PT method.  

d. The 2PT method applied to 2D systems 
Details of the 2PT method has been presented elsewhere 11-14, so we present an overview here, pointing 

out salient features for assessing the thermodynamics of 2D systems, and direct the interested reader to 

the published works12, 15. In 2PT, the system thermodynamics are calculated from the density of states 

DoS(v) (spectral density or power spectrum), obtained by the Fourier Transform of the velocity 

autocorrelation function C(t)16: 
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The total DoS(v) is then partitioned into a contribution arising from pure diffusion in the liquid 

[DoSdiffuse(v)] and a contribution arising from solid like vibrations [DoSsolid(v)], as proposed by Eyring and 

Ree17: 

( ) ( ) ( ) ( )* 1 * (3)diffuse solidDoS v f DoS v f DoS v= + −
 

where f is the “fluidicity factor”: the fraction of the modes of the system that are diffusional. This f factor 

is function of the system properties (self-diffusion, density and temperature) and is solved self 

consistently from the MD trajectory. In the original formulation, the total system thermodynamics is then 

recovered by integrating the individual power spectrum with the appropriate weighting factors, obtained 

from the Carnahan-Sterling (CS) equation of state (EOS) of hard-spheres18 in the case of DoSdiffuse(v) and 

from Debye theory of a vibrating crystal19 in the case of DoSsolid(v). Recently, Maiti and coworkers 

showed that the power spectrum of a 2D fluid may display unphysical physics, and that converged 

thermodynamics of a 2D system is obtained by considering the thermodynamics of hard disks15. This 

correction is employed in the present work. Specifically, due to the large anisotropy in in-plane and out-

of-plane self-diffusion constant, we evaluated the autocorrelation functions in each of the x,y and z 

directions separately. The system thermodynamics is then taken as the sum of all three contributions. This 

correction is employed in the present work. Another approach for treating the diffusive component, which 

is applicable to 2D systems, is the memory function approach of Desjarlais 20, which we found gives 

similar results to that of Maiti et al. 
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2. TABLES 
Table S1: Comparison of the 298K solid-liquid surface energies (mJ/m2) of water on graphene and 

graphite for several different water models. The total surface free energy (γSL) is separated into its 

enthalpic (γSL
H) and entropic (TγSL

S) components. The surface energy difference γSL
ΔG

 = γSL
G
 (graphene) - 

γSL
G
(graphite) is provided as reference, as is the liquid-vapor surface free energy γLV. 

Water FF  Graphene  Graphite    
 

γSL
G ± TγSL

S ± γSL
H ± γSL

G ± TγSL
S ± γSL

H ± γSL
ΔG γLV  

SPC/E21 -30.6 2.3 -7.5 2.2 -38.1 0.9 -46.5 3.6 10.0 3.6 -36.4 1.9 15.9 55.8 

TIP3P22 -18.9 2 -18.3 2.1 -37.2 1.2 -37.5 2.9 10.9 3.2 -26.6 2.4 -18.9 52.6 

TIP4P22 -18.2 2.2 3.7 2.2 -14.5 1.2 -34.0 2.6 22.9 2.8 -11.1 2.4 -18.2 56.3 

TIP4P 

/20051 

-18.1 2.2 37.7 2.1 19.6 1.1 -33.5 3.7 62.6 4.0 29.1 2.9 -18.1 64.4 

 

Table S2: Comparison of the interfacial thermodynamics (mJ/m2) of water on various graphene and 

graphite simulated with TIP4P/2005 water model at 298K, using various water – graphene sheet 

interaction potentials described with a 12-6 Lennard-Jones potential 
12 6
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 . We denote 

A1 = εO-C [kJ/mol], B1 = σO-C [Å], A2 = εH-C, B2 = σH-C 
 

 Graphene 
 

Graphite  
 

 γSL
G ± TγSL

S ± γSL
H ± γSL

G ± TγSL
S ± γSL

H ± γSL
ΔG 

MB-1 
23 

A1 =  0.11 

B1 = 3.32 

-19.5 1.3 0.0 4.5 -19.5 0.9 -35.2 2.0 17.0 6.9 -18.2 1.7 15.7 

MB-2 
23 

A1 =  0.15 

B1 = 3.22 

-35.5 1.7 -5.6 6.0 -41.1 1.1 -51.8 1.8 9.7 7.8 -42.1 2.2 16.3 

QMFF-

cw24 

A1 =  0.11 

B1 = 2.95 

A2 =  0.03 

B2 = 2.80 

-27.0 1.4 -16.3 4.8 -43.2 1.0 -45.2 2.6 12.3 8.1 -32.8 1.8 18.2 

Scocchi 
25 

A1 =  0.05 
B1 = 3.19 

7.9 1.6 21.8 5.5 29.7 1.1 -4.3 2.0 45.8 6.7 41.5 1.6 12.2 

Werder 
4 

A1 =  0.09 

B1 = 3.19 

-18.1 2.2 37.7 2.1 19.8 1.1 -33.5 3.7 62.6 4.0 29.1 2.9 14.7 
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Table S3: Decomposition of the total water energy (Htot) in water – carbon (HWG) and water – water 

(HWW) components (N). Results are presented for 4353 SPC/Ew waters between electrodes comprising 

various numbers of graphene sheets (N) with surface area of 3.7 x 3.7 nm2. All energies are in kJ/mol. 

N <H
WW

> ± <H
WG

> ± <H
tot

> ± 

1 -1273237.7 443.0 -1749.4 34.4 -1274987.1 534.0 
2 -1269528.3 452.6 -1845.2 42.1 -1271373.5 530.3 

3 -1268880.4 441.0 -1903.5 35.5 -1270783.9 530.5 

4 -1265999.6 427.4 -1904.9 35.6 -1267904.5 503.3 
5 -1262199.0 521.5 -1903.8 36.1 -1264102.8 660.2 

6 -1261659.7 406.7 -1902.5 35.8 -1263562.2 469.2 

 

Table S4: Comparison of the interfacial thermodynamics of water on multi-layer graphene sheets (N) 

298K using the TIP4P/2005 water model and the graphite-water interactions of Werder et al 4. All 

energies are in [mJ/m2]. 

N γSL ± γSL
TS

 ± γSL
H ± 

1 -18.1 2.2 37.7 2.1 19.6 1.1 

2 -29.7 2.5 47.0 2.5 17.3 1.4 

3 -30.9 2.3 56.0 2.3 25.1 1.5 

4 -32.9 2.7 62.5 2.8 29.6 1.8 

5 -32.2 3.3 61.6 3.5 29.4 2.7 

6 -33.5 3.7 62.6 4.0 29.1 2.9 

 

Table S5: Comparison of the interfacial thermodynamics of various water layers on graphite and 

graphene. All energies are in mJ/m2, and distances are in Å 

  graphene graphite 

 z(Å) <sl
G> ± <sl

H> ± <sl
TS> ± <sl

G> ± <sl
H> ± <sl

TS> ± 

1 4.81 4.5 0.3 18.1 0.3 13.6 0.4 2.7 0.4 21.2 0.3 18.5 0.3 

2 7.76 -6.6 0.2 -0.4 0.2 6.2 0.2 -9.6 0.2 3.7 0.2 13.4 0.1 

3 11.06 -5.8 0.3 -0.3 0.3 5.5 0.3 -8.5 0.2 1.8 0.2 10.3 0.2 

4 13.36 -3.8 0.2 -0.1 0.2 3.7 0.3 -6.4 0.2 1.2 0.2 7.6 0.1 

5 16.66 -3.0 0.2 0.0 0.2 2.9 0.3 -4.1 0.2 0.6 0.2 4.7 0.2 

6 19.96 -1.7 0.2 0.2 0.2 1.8 0.3 -3.4 0.2 0.3 0.2 3.7 0.1 

7 23.14 -0.7 0.2 0.0 0.2 0.7 0.3 -2.0 0.2 0.1 0.2 2.1 0.2 

bulk  -1.2 1.1 2.1 1.0 3.3 1.1 -2.4 0.9 0.2 1.0 2.6 0.9 
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3. FIGURES 

 
Figure S1 | Water hydrogen bonding at graphitic surfaces. a. Profile of water hydrogen bonding as a 

function of distance from topmost graphene surface, as a function of increasing number of graphene 

layers, from graphene (1sheet – orange) to graphite (6 sheets – green). We use the hydrogen bonding 

definition of Chandler and coworkers 26. Inset: Zoom of the 1st solvation shell H-bonding profile. b. 

Comparison of the H-bonding between graphene and graphite.  
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Figure S2 | Water layering on graphene and graphite. a. Mass density profile from equilibrium MD 

simulations. We assign the water molecule to a specific grid point (0.1 Å grid spacing), based on the 

distance between the center of mass of the molecule and the minimum distance a carbon atom. The 

density profile is the average over all snapshots in the MD simulation. Vertical dashed lines indicate the 

various water shell distances, given in Table S5. b. Water layers on graphene. Snapshot is from last 

structure of a 20ns MD simulation. Over 40ps, we assign each water molecule to a layer as defined in a. 

and color the water molecules based on their average layer: layer 1 – blue, layer 2: brown, layer 3: 

magenta, layer 4: green, layer 5: purple, layer 6: cyan, layer 7 cyan and bulk white. c. Water layers on 

graphite.  
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Figure S3 | Water layer Differential DoS: Comparison of the full density of states function for graphene 

(blue) and graphite (brown) as a function of water layer (i.e. distance from the interface).  
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Figure S4 | Vibrational Spectra of Interfacial Water. Density of states (DoS) function of the 1st 

interfacial water layer on graphene (blue) and graphite (brown) due to internal OH stretching interactions 

using the flexible TIP4P/2005f water model 27. The DoS of bulk water (black dashed line) is given as a 

reference. Interfacial water molecules contain the signature of broken, free OH bonds, as an additional 

peak in the spectrum near 3660 cm-1 (as indicated). The spectrum is also blue shifted by ~ 25cm-1 

compared to the bulk. The net result in an increase in the internal vibrational entropy which stabilizes the 

interfce (Right inset), however the high frequency of these modes means that they contribution less than 

0.1% to the interfacial surface free energy   

  

 
Figure S5 | Orientation of sub surface water molecules at graphitic interfaces.  Joint probability 

distribution function of OH orientation angles for water molecules in layer 2 and layer 3, relative to the 

bulk.  
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