Supporting Information

Lithium Polysulfide Radical Anions in Ether-Based Solvents

Kevin H. Wujcik^{a,b}, Dunyang Rita Wang^{b,c}, Aditya Raghunathan^{a,b}, Melanie Drake^a, Tod A.

Pascal^d, David Prendergast^d, Nitash P. Balsara^{a,b,e*}

a Department of Chemical and Biomolecular Engineering, University of California, Berkeley,

California 94720, USA

b Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

94720, USA

c Department of Materials Science and Engineering, University of California, Berkeley,

California 94720, USA

d Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720,

USA

e Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Author Information.

*E-mail: nbalsara@berkeley.edu, Phone: (510) 642-8937

I. UV-vis Spectra Peak Fitting and Parameters

UV-vis spectra obtained for polysulfide solutions were fit using a series of Gaussian functions in Igor Pro's MultipeakFit peak fitting program. An example of the peak fitting is shown below in Figure S1, where the raw spectrum of the TEGDME, $x_{mix} = 4$, 50 mM sample is plotted along with the calculated fit and the individual Gaussian functions comprising the calculated fit.

Figure S1: Peak fitting for the TEGDME, $x_{mix} = 4$, $C_S = 50$ mM UV-vis spectrum

The parameters pertaining to each solution's UV-vis spectrum are shown in Tables S1-S15 below.

Table S1. UV-vis peak fitting parameters for TEGDME $x_{mix} = 4$, $C_S = 10$ mM	Table S1	. UV-vis peak f	tting parameters f	or TEGDME x	$x_{mix} = 4, C_s = 10 m$	Μ
---	----------	-----------------	--------------------	-------------	---------------------------	---

TEGDME $x_{mix} = 4$, $C_s = 10 \text{ mM}$				
	Location	Amplitude	Area	
Peak 0	297.93	0.77	42.88	
Peak 1	339.16	0.44	19.65	
Peak 2	410.92	0.32	42.74	
Peak 3	472.20	0.01	0.24	
Peak 4	617.00	0.10	12.05	

TEGDME $x_{mix} = 4$, $C_S = 50 \text{ mM}$					
	Location	Amplitude	Area		
Peak 0	300.72	3.95	191.84		
Peak 1	338.28	1.77	78.23		
Peak 2	407.32	1.35	164.09		
Peak 3	617.00	0.24	28.19		

Table S2. UV-vis peak fitting parameters for TEGDME $x_{mix} = 4$, $C_S = 50$ mM

Table S3. UV-vis peak fitting parameters for TEGDME $x_{mix} = 4$, $C_S = 100 \text{ mM}$

TEGDME $x_{mix} = 4$, $C_S = 100 \text{ mM}$				
	Location	Amplitude	Area	
Peak 0	321.76	6.44	409.40	
Peak 1	411.54	2.70	316.65	
Peak 2	617.00	0.39	45.07	

Table S4. UV-vis peak fitting parameters for TEGDME $x_{mix} = 6$, $C_S = 10$ mM

TEGDME $x_{mix} = 6$, $C_S = 10 \text{ mM}$				
	Location	Amplitude	Area	
Peak 0	291.01	0.48	24.28	
Peak 1	337.24	0.32	14.91	
Peak 2	334.99	0.22	54.49	
Peak 3	442.37	0.13	13.52	
Peak 4	617.00	0.05	6.04	

Table S5. UV-vis peak fitting parameters for TEGDME $x_{mix} = 6$, $C_S = 50$ mM

TEGDME $x_{mix} = 6$, $C_S = 50$ mM				
	Location	Amplitude	Area	
Peak 0	292.43	3.85	216.60	
Peak 1	335.76	2.30	128.79	
Peak 2	418.34	1.50	218.79	
Peak 3	617.00	0.21	24.52	

TEGDME $x_{mix} = 6$, $C_S = 100 \text{ mM}$				
	Location	Amplitude	Area	
Peak 0	345.13	3.65	175.41	
Peak 1	417.63	3.24	455.74	
Peak 2	617.00	0.39	45.09	

Table S6. UV-vis peak fitting parameters for TEGDME $x_{mix} = 6$, $C_S = 100 \text{ mM}$

Table S7. UV-vis peak fitting parameters for TEGDME $x_{mix} = 8$, $C_S = 10 \text{ mM}$

TEGDME $x_{mix} = 8$, $C_s = 10 \text{ mM}$				
	Location	Amplitude	Area	
Peak 0	275.30	0.69	55.44	
Peak 1	337.99	0.24	12.72	
Peak 2	418.26	0.20	29.60	
Peak 3	617.00	0.03	3.45	

Table S8. UV-vis peak fitting parameters for TEGDME $x_{mix} = 8$, $C_S = 50 \text{ mM}$

TEGDME $x_{mix} = 8$, $C_S = 50 \text{ mM}$				
	Location	Amplitude	Area	
Peak 0	283.30	3.96	326.05	
Peak 1	341.47	1.07	59.53	
Peak 2	405.33	1.25	264.77	
Peak 3	617.00	0.08	8.95	

Table S9. UV-vis peak fitting parameters for TEGDME $x_{mix} = 8$, $C_S = 100 \text{ mM}$

TEGDME $x_{mix} = 8$, $C_S = 100 \text{ mM}$					
	Location	Amplitude	Area		
Peak 0	268.74	11.93	1901.30		
Peak 1	440.64	0.71	54.73		
Peak 2	457.16	1.72	342.99		
Peak 3	617.00	0.12	15.67		

TEGDME $x_{mix} = 10$, $C_s = 10$ mM				
	Location	Amplitude	Area	
Peak 0	278.26	0.67	50.54	
Peak 1	337.39	0.23	12.45	
Peak 2	416.51	0.18	27.42	
Peak 3	617.00	0.02	2.64	

Table S10. UV-vis peak fitting parameters for TEGDME $x_{mix} = 10$, $C_S = 10$ mM

Table S11. UV-vis peak fitting parameters for TEGDME x_{mix} = 10, C_S = 50 mM

TEGDME $x_{mix} = 10$, $C_S = 50$ mM				
	Location	Amplitude	Area	
Peak 0	259.19	4.61	833.28	
Peak 1	442.92	0.45	37.09	
Peak 2	482.41	0.46	80.51	
Peak 3	617.00	0.06	7.29	

Table S12. UV-vis peak fitting parameters for TEGDME x_{mix} = 10, C_S = 100 mM

TEGDME $x_{mix} = 10$, $C_S = 100 \text{ mM}$							
	Location	Amplitude	Area				
Peak 0	255.63	11.81	2102.40				
Peak 1	444.38	0.52	38.15				
Peak 2	464.25	1.56	313.01				
Peak 3	617.00	0.08	9.98				

Table S13. UV-vis peak fitting parameters for PEO x_{mix} = 4, C_S = 10 mM

PEO $x_{mix} = 4$, $C_S = 10 \text{ mM}$						
	Location	Amplitude	Area			
Peak 0	305.33	0.75	68.44			
Peak 1	345.67	0.42	13.79			
Peak 2	428.60	0.26	34.66			
Peak 3	617.00	0.06	7.38			

PEO $x_{mix} = 6$, $C_s = 10 \text{ mM}$							
	Location	Amplitude	Area				
Peak 0	299.13	0.56	53.20				
Peak 1	344.48	0.20	6.87				
Peak 2	425.35	0.17	22.55				
Peak 3	617.00	0.03	3.94				

Table S14. UV-vis peak fitting parameters for PEO $x_{mix} = 6$, $C_S = 10$ mM

Table S15. UV-vis peak fitting parameters for PEO $x_{mix} = 8$, $C_S = 10 \text{ mM}$

PEO $x_{mix} = 8$, $C_S = 10 \text{ mM}$							
	Location	Amplitude	Area				
Peak 0	296.63	0.41	18.07				
Peak 1	336.83	0.35	17.93				
Peak 2	416.55	0.14	19.78				
Peak 3	617.00	0.02	2.71				

II. EPR Spectra Fitting and Parameters

EPR spectra were fit using a first derivative Tsallian function as described by Weir et al.¹ and shown in Equation S1:

$$y = a \frac{(2^{(b-1)}-1)}{(b-1)} \frac{2}{d^2} (x-c) \left[1 + (2^{b-1}-1) \left(\frac{x-c}{2d}\right)^2 \right]^{\left(\frac{-b}{b-1}\right)}$$
(Equation S1)

Here, four parameters (*a*, *b*, *c*, and *d*) were fit for each spectrum. The spectra were fit using Igor Pro's Curve Fitting program. An example fitting is shown in Figure S2, for the TEGDME, $x_{mix} = 6$, 100 mM spectrum.

Figure S2: Peak fitting for the TEGDME, $x_{mix} = 6$, $C_S = 100$ mM EPR spectrum

After fitting the EPR spectra with the Tsallian first derivative line functions, the fits were then integrated using Igor Pro's built-in Integration function (using a trapezoidal integration algorithm). The areas of the resulting integrated Tsallian curves were then obtained using Igor Pro's "areaxy" code. The g-factors (`g') for each solution were obtained using Equation S2:

$$g = \frac{B\mu_B}{h\nu}$$
(Equation S2)

Here, *h* represents Planks constant; *v* is the microwave frequency of the given EPR experiment; *B* is the center of the EPR spectrum (the field strength at which the EPR spectrum intersects y = 0), which for each spectrum was parameter *c* determined from fitting of Equation S1 above; and μ_B the Bohr magneton. The fitting parameters, g-factors, and integrated areas for each EPR spectrum are shown below in Tables S16 and S17.

TEGDME EPR Spectra Fit Parameters										
X _{mix}	Cs	a	±	b	±	c	±	d	±	g-factor
	10	0.91	0.01	1.68	0.06	3424.3	0.35	25.9	0.4	2.0280
	50	1.52	0.01	1.35	0.03	3420.5	0.23	26.55	0.2	2.0298
4	100	3.18	0.02	1.59	0.02	3420.3	0.12	27.76	0.13	2.0307
	300	6.18	0.02	1.49	0.01	3420.1	0.08	27.81	0.08	2.0302
	10	0.22	0.01	1	0	3435.1	0.08	15.77	0	2.0221
E	50	1.47	0.01	1.34	0.03	3422.4	0.23	26.66	0.19	2.0294
6	100	2.96	0.02	1.39	0.02	3418.7	0.14	27.26	0.13	2.0305
	300	7.24	0.02	1.8	0.01	3418.9	0.07	29.84	0.09	2.0308
	10	0.18	0.01	1.21	0.16	3438.4	0.97	16.74	0.7	2.0203
8	50	0.52	0	1	0	3425.8	0.03	22.46	0	2.0274
	100	1.39	0.02	1.37	0.03	3421.1	0.26	25.6	0.22	2.0302
	300	3.35	0.02	1.69	0.02	3420.7	0.13	26.41	0.15	2.0298
10	10	0.13	0.01	1.01	0.15	3442	1	14.62	0.61	2.0176
	50	0.56	0.05	1	0	3424.3	0.04	21.43	0.86	2.0280
	100	0.97	0.01	1.18	0.04	3423.2	0.34	24.7	0.24	2.0288
	300	2.67	0.02	1.52	0.02	3419.6	0.16	26.29	0.16	2.0299

Table S16: EPR peak fitting parameters for TEGDME polysulfide solutions

Table S17: EPR peak fitting parameters for PEO polysulfide solutions

PEO EPR Spectra Fit Parameters										
X _{mix}	Cs	a	+1	b	±	c	+1	d	±	g-factor
4	10	0.62	0.01	1.43	0.06	3421.7	0.3	17.03	0.27	2.0315
4	300	7.98	0.02	2	0.01	3418.4	0.03	19.99	0.05	2.0318
6 -	10	0.27	0.01	1	0.07	3423.6	0.55	15.32	0.36	2.0289
	300	1.6	0.02	2	0.04	3414.1	0.14	18.11	0.22	2.0327
8	10	0.126	0.01	1.56	0.27	3413.2	0.74	10.98	0.76	2.0351
	300	1.03	0.01	1.8	0.05	3413	0.17	16.7	0.22	2.0340

References

(1) Weil, J. B., James *Electron Paramagnetic Resonance Elementary Theory and Practical Applications*; Second Edition ed.; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2007.