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ABSTRACT: Modern computer simulations can provide unique
atomic-scale insights into complex material systems, but the method
of performing a simulation may seem obscure to the nonspecialist.
The goal of this Protocol is to introduce to experimental researchers a
description of the tools and methods used in atomic simulations
which elucidate the structure, morphology, and dynamics of polymers
and nanomaterials. In particular, it focuses on the workflow and
logistics of simulations in which the central component is indivisible
atoms (“atomistic” as opposed to “quantum” or “continuum”
methods). We present methods which describe the positions of
atoms, e.g., Monte Carlo (MC) and molecular dynamics (MD)
simulations, along with the necessary processes by which simulations
are set up, run, and analyzed. However, much of the terminology and
workflow outlined in this Protocol is general and thus applies to
methods beyond MC and MD as well as other molecular systems (e.g., proteins). This Protocol is separated into three general
sections. First, it describes the three types of information that are required for a simulation: a description of the system (i.e., “data
file”), instructions for the simulations engine (i.e., “software input file”), and instructions for the hardware, usually supercomputing
infrastructure (i.e., “hardware input file”). The data file, generally, describes the initial state of the system as well as a definition of
how the atoms within the system interact (usually denoted as a “force field”). Together, these three pieces of information are used to
run a simulation, which then produces an output that can be analyzed by the researcher. We hope that this Protocol will provide at
least three things for the experimentalist: (1) a frame of reference for the interpretation of computational data, (2) facilitation of
collaboration with computational scientists, and (3) the encouragement to perform some computational tasks on their own.

■ INTRODUCTION
In recent years, improvements in computational hardware (i.e.,
consequences of Moore’s law1) and the proliferation of
supercomputing centers have greatly increased the accessibility
and usefulness of computational research. Coupled with an
ever-growing description of the fundamental physics, chem-
istry, and thermodynamics that govern the behavior of an
atomistic system, computational models have become more
sophisticated, less retrodictive, and more predictive.2−6 These
factors have increased the importance, ubiquity, and utility of
scientific computing in all aspects of research. Nevertheless, the
tools used by computational scientists can seem obscure to the
experimentalist. Without functional literacy, it is difficult to
interpret or judge the merits of a computational study.
Similarly, while a researcher might recognize results generated
by computational models (e.g., as published in the literature),
unfamiliarity with the computational process itself poses a
significant barrier to entry for an experimentalist. In this
Protocol, we attempt to demystify the process of scientific
atomistic computing. Our intended audience is an exper-
imental scientist in the area of materials chemistry. Notably, we

do not intend for this work to exhaustively describe the
simulation process to a novice computational scientist, for
which there is already a wide variety of excellent resources
widely available.7−9 Rather, we focus on the process of what
computational scientists do and attempt to give context as to
the relative ease or difficulty of certain tasks. We give special
attention to organic materials, which reflects the idiosyncrasies
of the authors. Most of our discussion is centered around
classical atomistic simulations, e.g., molecular dynamics and
Monte Carlo simulations, where we do not explicitly consider
electronic degrees of freedom. Instead, we describe the energy
and forces in the system (i.e., the components and their
interactions under study) using smooth analytic potentials (i.e.,
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force fields). Force fields, in this context, analytically (e.g.,
mathematically) describe all interactions between components
(e.g., atoms or molecules) within a simulation. In other words,
a force field mathematically describes what is happening within
a system. Simulations using force fields are applicable to a wide
variety of molecular materials.10,11 Likewise, the methods and
terminology used in this Protocol are widely applicable to a
range of molecular systems, even if specifics differ.
An experimentalist might wonder why they might choose to

seek out or perform computational simulations and how
computational simulations can be used synergistically with
their own research. To summarize briefly, computational
simulations are commonly used to predict, verify, and/or
elucidate experimental results in a cost-effective and time-
effective manner. For example, a chemist might want to
synthesize a semiconducting polymer with favorable charge-
transport properties and high mechanical compliance for
applications in organic electronics. Rather than painstakingly
synthesizing several families of polymers, fabricating devices to
test their electronic properties, and then characterizing their
mechanical properties, the chemist might instead choose to use
computational simulations to predict which families of
polymers are most likely to have desirable properties. Thus,
computational simulations can be used to guide the rational
design of new polymeric materials.
Many articles describe the results of simulations. However, it

is often difficult for an experimentalist to glean an under-
standing of the logic and workflow of designing and running a
simulation. Understanding the process of running a simulation
is critical for both evaluating computational work and applying
computational insights in experimental research. The typical
workflow of performing a simulation, from start to finish, is
outlined in Figure 1. In this process, three types of information

are fed into a program, typically in the form of submission files.
These submission files contain instructions designating the
initial state of the system (i.e., a description of the components
being modeled as well as the interactions between each
component), how the software should simulate the system
(i.e., what information should be calculated and what method
should be used), and how the hardware should execute the

program (i.e., a definition of the computational environment).
In this Protocol, we arbitrarily refer to these inputs,
respectively, with the following nomenclature: “data input,”
“software input,” and “hardware input”. The program takes
information from the data input to construct the initial
configuration of the simulated system. The simulation then
propagates the system over time or space. When this
simulation is finished, the program will have generated
information that can be analyzed in postprocessing (e.g., the
equilibrium configuration of the material, thermodynamic
properties of the system).
First, the initial starting condition for the simulation (i.e., the

data input) must be elaborated. We discuss how to determine
and specify an initial condition for the system and what pitfalls
must be avoided in doing so. We then describe how the
interactions between the different atoms of the system should
be included in the model, i.e., the force field.12 Next, we
describe how to create an input for the simulation software
(software input). In addition, we make suggestions regarding
judicious selection of a simulation software. Likewise, we
provide guidance on running and managing the hardware
(hardware input). These hardware specifications are often
specific to the system being simulated and should be carefully
considered to optimize the performance of the program
software.
Background. A classical atomistic computer simulation

constructs a model in which all of the components (e.g., atoms,
ions, and molecules) and interactions (e.g., Coulombic,
covalent, van der Waals) in the system (i.e., the interacting
components under study) are defined independently. We
center our discussion on simulations in which the motions and
relative orientations of nuclei are the central focus, namely,
molecular dynamics (MD) and Monte Carlo (MC)
simulations. While their methodology can differ significantly,
the two have similar requirements. Likewise, both MD and MC
simulations are often used to supplement experimental studies.
Therefore, we use both MD and MC simulations as a
framework for introducing how computational simulations are
conducted in this Protocol.
Simulations are often purpose made to have one central

focus and to disregard other aspects of the chemical system in
order to maximize computational efficiency. What a researcher
chooses to include or remove from a computational model
affects the accuracy of the model, and thus, they must seek a
balance between computational efficiency and accuracy. In
simulations governed by classical mechanics employing force
fields, electronic and continuum behaviors are often simplified
or ignored.10,11,13,14 For example, one group of phenomena
that is generally excluded is the energetics and transport of
electrons. Thus, formation and breakage of bonds, energetic
positions of the molecular orbitals, and electronic currents are
typically not explicitly considered.15−19 Proxies for such
phenomena are often used instead if the phenomena are
known to have an effect on the motion of the nuclei (e.g.,
polarizable and reactive models).20,21 However, these proxies
are limited to obtaining the correct atomic configuration,
rather than modeling electron behavior (e.g., determination of
the band gap of a material). On the opposite extreme, classical
atomistic simulations generally lack the necessary length and
time scales to directly predict macroscale behavior, such as
deformation of a solid sample of macroscopic dimensions.
Such behavior is typically the realm of continuum approaches.
Therefore, we see that the dominant interactions (i.e., bond

Figure 1. Overview of the types of information required to run a
simulation. Researcher begins by creating the data input (or has it
embedded within the program input) to inform the program of the
initial arrangement and specific interactions of all atoms (Figure 4).
Researcher must then create a software input, which uses the data
input to begin the simulation on the program and tells the program
how to run the simulation (Figure 6a). Hardware input file is also
required if specialized hardware is used (i.e., a supercomputer), which
informs the hardware how to run the program according to the
software input and hardware specifications (Figure 6b). These three
tasks converge to carry out the simulation. After the simulation is
complete, it is then analyzed by the researcher.
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scission, macroscale stretching, and stress concentration) that
govern a model in part determine the time and length scales it
can handle accurately. The inverse is true as well; a researcher
must select a physical model appropriate for the information
they want to extract from the simulation.
At the heart of classical atomistic simulations is the

description of how the particles interact (i.e., the “force
field”). The force field describes interparticle relationships in a
system and is traditionally defined using analytic functions
(e.g., quadratic terms to describe bond stretching). Since the
electronic degrees of freedom are ignored, simulations
employing force fields are relatively efficient. Nowadays, at
various supercomputing facilities, simulations of millions of
atoms, sometimes evolved over hundreds of nanoseconds in
the case of MD, are routinely performed. The parameters that
define the force fields (e.g., bond lengths and associated
vibrational frequencies) are obtained in a variety of ways,
including from accurate electronic structure and quantum
mechanical calculations of model systems. In these cases, the
resulting force field can be quite general and predictive. As an
alternative, quantum mechanical calculations can be used to
directly describe atomic interactions, in so-called ab initio
simulation.22,23 The drawback of such approaches is that the
length and time scales that are practically accessible are
significantly reduced to thousands of atoms over hundreds of
picoseconds of dynamics, respectively. The choice of force
fields or quantum mechanics depends on the property being
calculated, the size of the system being considered, and the
time scale of the process being modeled. This Protocol
primarily focuses on MC or MD simulations that require use of
force fields, although we will touch upon ab initio simulations
where appropriate.
The key characteristic of classical force field-based

simulations is that all interactions between components of
the system are described using classical, analytical equations.
As noted previously, this approach stands in contrast to

simulations which explicitly model subatomic components like
electrons (e.g., density functional theory, Hartree−Fock) or
resolve higher length and/or time scales without explicitly
modeling atoms (e.g., finite element analysis, finite-difference
time domain). However, force field simulations also differ in
terms of atomic resolution. For example, hydrogen atoms are
sometimes not explicitly considered but rather grouped with
the atom to which they are bonded. Going one step further,
multiple similar atoms or functional groups of atoms can be
grouped into a “superatom” to simplify the simulation and
reduce the computational power required to perform it. This
type of simulation, in general, is described by the term “coarse
grained.” On the other end of the spectrum, force field
simulations can be used to approximate the behavior of
subatomic particles in polarizable force fields. Here, there are
various approaches for modeling the subatomic degrees of
freedom (e.g., Drude oscillators, point dipoles, fluctuating
charges). Yet, all examples described fall under the same class
of simulations (“molecular mechanics”), and thus, the general
procedures described herein apply to any of these types of
simulations as well.
An experimentalist might be familiar with a wide range of

characterization techniques that can be conducted with one
instrument common to their field of study. Although the
equipment used remains the same, each of these character-
ization techniques could give distinctive data useful for
understanding their system at hand. Simulations are similar
in this regard. Although the instrument used for all simulations
is a computer, many different classes of simulations exist, each
of which focuses on systems of different sizes with different
time scales of interest. Likewise, as alluded to above, each class
of simulations may contain several types of simulations that are
specialized for specific systems. We summarize four common
classes of simulations (quantum mechanics, molecular
mechanics, continuum mechanics, and finite element analysis)
below along with a general range of their resolutions and an

Figure 2. Summary of four common classes of simulations�quantum mechanics, molecular mechanics, continuum mechanics, and finite element
analysis�and their typical size and time resolutions. As the time scale and system size increases, a greater number of assumptions and
approximations must be made in order to ensure that a simulation runs efficiently. Several examples of common-use cases are given for each class of
simulations.
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incomplete list of examples of systems that would typically fall
under their purviews (Figure 2). Not all classes of simulations
are hammers, and not all systems of interest are nails; no one
class of simulations is “one-size-fits-all”, and thus, a researcher
must judiciously select a simulation appropriate for their
system under study. In general, an increase in the time scale or
size of the system of interest requires a greater number of
assumptions and approximations. These assumptions are made
in order to complete a simulation in a reasonable amount of
time as well as balance the trade-off between accuracy of the
simulation and efficiency (e.g., time, cost). For example,
quantum mechanical simulations make several fundamental
assumptions regarding electronic behavior (e.g., objects are
restricted to discrete values). In molecular mechanics,
simulations generally assume no quantum effects with at
least partial separation of atoms. In continuum mechanics,
objects within systems are generally assumed to be
homogeneous and isotropic (as well as typically under
steady-state conditions). A system modeled using finite
element analysis (FEA) might assume idealized materials
(e.g., no defects) and loading conditions.
Force field-based simulations can give insight into how the

atomic configuration of a material changes naturally over time
or in response to some external stimulus. A detailed picture of
material properties comes at a price in that it is typically
computationally demanding. As a necessity, modern-day
simulations exploit the computing power of local clusters or,
more commonly, supercomputing facilities. A supercomputer
uses up to tens of thousands of processors simultaneously and
facilitates communication between processors, providing the
infrastructure to model complex material systems faster than
could be modeled using local hardware (e.g., commercial
laptops and desktops).24 Yet, even on a supercomputer, using
conventional MD to evolve the system forward in time, a single
nanosecond simulating a reasonably sized system�approx-
imately 100 000 atoms�could take several hours for an
unoptimized system. We do note, however, that optimizing the
configuration of such a simulation could reduce this estimate
by several orders of magnitude.25−27 As these time scales are
substantial even on specialized hardware, we will focus on
describing simulations on a supercomputer. However, the

general process this Protocol describes, at least for software
operation, would be similar for any computational architecture
(i.e., both local and cloud resources).
Another feature of force field-based simulations is its relative

accuracy, particularly when detailed information about the
structure or thermodynamics of a system is desired. However,
it is not without significant limitations. An experimental
researcher must maintain reasonable expectations for what
information can be garnered and how complex the simulations
can be made. Among the most common uses for force field-
based simulations are those elucidating biological or
biochemical systems for research in chemistry or biology
(e.g., drug development). For example, for proteins, a force
field-based simulation can help determine the shape of the
active site, how the active site changes in conformation upon
the binding of a ligand (whether to the site itself or an
allosteric binding site), or even the overall shape and
positioning of the active site. In organic systems, these
simulations may give insight into the structure of a polymer
chain in solution and determine useful properties, such as its
radius of gyration or end-to-end distance. In inorganic systems,
these simulations can elucidate the crystallographic structure of
materials as well as thermodynamic observables (e.g., heat of
formation).
In general, the greater the complexity of a system and the

more computational power is used, the more accurate a
simulation will be. There are a number of reasons why the
complexity and computational cost of a simulation using force
fields might increase. For example, simulation times increase
when considering processes that (1) evolve over a long period
of time, (2) require simulation of large cell sizes (e.g., a larger
molecule, cell, or polymer chain), (3) undergo chemical
changes, or (4) involve various nonequilibrium processes. The
crystallization of many materials can take place over minutes or
hours, far outside the accessible time scale of equilibrium
atomistic simulation. Another example might be the interaction
of multiple large protein complexes. Though critical dynamics
might be captured on the hundreds of nanoseconds time scale
(at the upper range of practicality), the sheer size of these
systems makes direct simulation on experimentally relevant
time scales difficult. Likewise, while nonequilibrium processes

Figure 3. Overview of Monte Carlo (MC) and molecular dynamics (MD) simulations. Both systems progress from an initial, user-defined
arrangement of atoms. In MC simulations, the energy of the system is calculated, while in MD simulations, the net force on each atom is calculated.
MC simulations are then advanced randomly, given a probabilistic “chance” test. Dotted lines represent possible outcomes: system could fail the
test and return to its initial position or succeed and advance to a new atomic configuration. In comparison, MD simulations are advanced
deterministically using the force on the atoms to determine where they will end up a very short interval in the future. In both cases, the processes
are then repeated (i.e., a new energy of the system is then calculated in a Monte Carlo simulation, while new forces are calculated in a molecular
dynamics simulation) until enough of the system is sampled that the thermodynamics can be computed.
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can be observed through these simulations, a researcher must
take care that they are simulating a sufficient amount of time to
allow the simulation to adapt and change realistically. For
example, a lack of sufficient time for a simulation of a solid
polymeric sample under strain may not allow for the atoms to
naturally contort and relax. Due to the system not reaching its
equilibrium morphology, artifacts may dominate the system
(e.g., nonphysical bond stretching). Additional complexity can
be added when (1) describing chemical reactions (e.g., the
chemistry of bond-breaking and -forming events) or (2)
applying more complex interaction potentials (e.g., reactive
force fields or ab initio molecular dynamics approaches).
Therefore, the general complexity of evaluating the forces or

energy of many systems of interest usually necessitates
downscaling of simulation time and size for practicality.
Methods of Interest. The computational schemes we

focus on are molecular dynamics (MD) and Monte Carlo
(MC) methods (Figure 3).10,11 These two approaches are
similar in many ways. In both cases, the interactions between
atoms define the energies of the system and the forces between
the atoms. A total energy is the assigned to the system, or a net
force is calculated for each atom.
Monte Carlo simulations focus entirely on the energy of the

system. Here, the initial configuration is randomly changed
(either displacing an atom, rotating a molecule, or inserting or
deleting a molecule), and the energy of the new configuration

Figure 4. Example of a data file used by the LAMMPS MD simulations engine. This file describes a simple simulation of an isolated methanol
molecule in a large simulation box. File is given alongside a pseudocode interpretation of each section of the file. In addition, numbers are assigned
to each section of the file, and full text descriptions are given here. (1) Number of atoms and number of explicit interactions (e.g., bonds, angles,
dihedrals) in the system. For a simple methanol system, there are 6 atoms, 5 bonds, and so on. (2) Size of the simulation box. This simulation of
the methanol molecule will take place in a cubic box with lengths of 50 Å, containing only a single methanol molecule. (3) Descriptions of each
atom type, bond type, etc., are given. Atom type 1 describes the carbon atom in methanol, atom type 2 describes the oxygen atom, and atom types 3
and 4 describe the hydrogen atoms bonded to the carbon and oxygen, respectively. “Pair Coeffs” section provides the sigma and epsilon parameters
of Lennard−Jones interactions. “Bond Coeffs” provides the spring constant and equilibrium length (in Angstroms) of the bonds, and so on. (4)
Specific information about each atom in the system is specified. Each atom is defined with a numerical ID, a molecule ID, an atom type (e.g., the
carbon atom is type 1, the oxygen atom is type 2), and initial xyz coordinates. With this the initial state of the system is completely described.
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is calculated. The simulation then has a decision to make:
accept this random change in configuration or go back to the
original configuration. The decision occurs probabilistically,
with the likelihood of keeping the new configuration increasing
as the energy difference with the previous configuration
decreases.28 In this way, the system will preferentially�but not
always�explore low-energy conformations. Simulations using
MC methods thus mostly survey low-energy states while also
traversing the energy barriers between low-energy, favorable
conformations.
In contrast, a molecular dynamics simulation evolves a

system forward in time based on the forces on the atoms.
While MC samples configurations in a probabilistic fashion,
MD simulations�at least in their purest form�move
deterministically.29 On the basis of again an initial con-
formation of atoms, a net force is calculated on each atom. The
system is then advanced in time by numerical integration: the
forces and masses of each atom are used to calculate the
acceleration of the atoms according to Newton’s second
law.30,31 The accelerations are then integrated over a small
increment of time (called a “time step”) to generate a new
position of the atoms. For numerical stability, the time step is
typically related to the fastest motion in the system. For
example, in organic materials, this is often a C−H bond
vibration due to their very short time scale (on the order of
femtoseconds).32,33 The process is then iterated, and the
resulting thermodynamic properties are obtained by statistical
averaging.
MC and MD simulations both determine the energetic

minima and distribution of energy states of a system at
equilibrium. However, they have key differences in how they
proceed. MD simulations sample configurations that are close
in energy to the initial configuration (relative to the
temperature), which means that the chances of capturing
very high energy states or overcoming large energy barriers is
small. MC simulations explicitly encompass the entire energy
landscape, but the time evolution of the system is lost. Due to
the reliance of MC on random moves, it can more easily
overcome energy barriers in a free energy surface than MD.
However, this advantage comes at the cost of mechanistic
information, that is, how the system might actually traverse the
energy landscape. Which approach is most useful for a
particular system depends on the complexity of the system,
computational demands, and thermodynamic information that
is desired.34 Notably, the ability to access temporal information
about a system is an advantage of MD simulations and
facilitates the calculation of several useful properties (e.g.,
(self) diffusivity). As a result, MD simulations are usually
preferred in materials science. However, if the equilibrium
morphology of a material is the primary interest, MC
techniques are attractive, as they are typically more efficient
at utilizing computing resources. This computational efficiency
is especially clear in systems defined by rugged or complicated
potential energy landscapes. In addition, MC is often superior
at evaluating systems in different phases, such as liquid−vapor
equilibria and adsorption.35,36

■ PRACTICAL STEPS IN FORCE FIELD-BASED
ATOMISTIC SIMULATIONS

1. Step I: Input Information. Three types of information
are typically required to initialize a simulation: a description of
the initial system, instructions for the software on the
simulation tasks, and instructions for the hardware to run the

simulation. This information is generally inputted in the form
of submission files (e.g., files that are uploaded or read). For
simplicity, we refer to these inputs, respectively, as data file,
software file, and hardware file.

1.1.1. Creating the Data File and Specifying the Initial
System. The data file describes the initial position of all of the
atoms and defines how the atoms will interact. We note that
the initial state of the system could instead be directly
embedded within the program input (e.g., script) rather than
being a data file that is uploaded.
A crucial aspect of initializing the system is the initial

placement of the atoms. The initial position of the system is
specified in the data file. In both MC and MD, the simulation
is likely to initially move toward an energetic minimum nearby
this initial configuration. If the initial configuration is near an
unphysical (i.e., unrealistic) energetic minimum, e.g., extremely
high in energy but with similar conformations that are even
higher in energy, the simulation will progress within the
unphysical minima, and unphysical results will be ob-
tained.37−40 The initialization of the simulation is also of
great importance to the workflow chosen. There are many
programs which will simply run a MD or MC simulation after
it is initialized.41−49 Therefore, this initialization is typically the
only time the user has direct control over the simulation. Thus,
much like an experimentalist must optimize measurement
parameters to minimize artifacts due to the measurement itself,
judicious selection of the initial conditions will facilitate
efficient and meaningful simulations (Figure 4).
A data file may be created simply by “brute force”, whereby

the coordinates of the atoms are copied from a molecular
rendering software (e.g., Avogadro).50 Such an approach works
well if the system is relatively small. However, for systems
comprising thousands of atoms, this method is impractical. An
additional complication is the need for randomness in the
initial position. For example, consider a single polymer chain
initially stretched out. The all-trans conformation, in which all
dihedral potential energies are minimized, is likely an enthalpic
metastable minimum. Thus, this extended conformation is
easily built with common molecule drawing software packages.
However, an extended polymer chain conformation is
exceedingly unlikely to occur in reality, as such a state is
highly unfavorable entropically. Therefore, this conformation
may represent a poor choice of the initial position, particularly
if rotation of the monomers to a more randomized
configuration is a slow process that would take a long time
to achieve (i.e., conjugated polymers). Instead, it is often
optimal to create random configurations of the atoms using
Boltzmann weighting. This randomness is a base requirement
in many systems of interest. For example, in a liquid, it would
be essentially impossible for molecules to be oriented in the
same direction. Therefore, the molecules should be rotated to
introduce randomness while maintaining a Boltzmann
distribution. Similarly, when simulating a glass, not every
atom is evenly spaced (as in an ideal crystalline lattice), and so
some degree of randomness should be built into the initial
state. To generate more realistic initial positions of atoms for
more complicated systems, it is often necessary to use a
program to impose randomness in the system. The many
different ways in which randomness can be introduced and the
advantages and disadvantages of each method have been
discussed by the thorough work of others.51,52

In MD simulations, another important consideration is the
accounting of steric repulsive forces at short distances, that is,
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for many types of pairwise interactions, the energy of repulsion
between atoms increases dramatically when atoms get too
close. This “Pauli repulsion force” is frequently modeled in a
force field by an exponential function. The exponential nature
of the repulsion means that two molecules initialized too close
together will move apart very rapidly at the next time step. In
situations where the two molecules move farther apart than can
be numerically accounted for, the simulation becomes unstable
(and can fail or crash). Therefore, when multiple molecules are
placed in random positions, molecules should be initialized
with adequate initial spacing. Several software packages exist to
ensure a reasonable initial configuration.53,54 Alternatively, in
particularly difficult cases, a different style of interaction which
does not involve exponential repulsive forces (e.g., soft
potentials) may be used at the beginning of a simulation.
Finally, depending on the diversity of starting configurations,

it may be useful to generate multiple different starting data files
and to simulate each system simultaneously and independ-
ently.55,56 For example, simulations of polymer films below
their glass transition will remain relatively frozen in their initial
position. Therefore, multiple simulations, averaged together,
are needed to obtain accurate results about the overall film
morphology and energetics.
1.1.2. Choice of Force Fields. Another critical component of

a simulation is the description of the interactions between the
components (e.g., atoms, molecules). As noted previously,
when describing these interactions, we restrict ourselves to
classical MC or MD simulations employing force fields. This
force field analytically defines all interactions deemed
important to the outcome of the simulation such as the
flexibility of a bond or long-range attractivity of an atom.
Notably, the force field is an all-inclusive entity: a single force
field defines how any two arbitrary atoms several Angstroms
apart will be treated as well as how two bonded atoms will
behave.
The choice of force field is thus crucial. A researcher can

either select an existing force field or attempt to develop their
own. The latter is a notoriously difficult proposition for even
the most seasoned researcher, and the use of widely available
force fields for a variety of systems is highly recommended
(Table 1).44,57−75 Even if adjustments to the force field are
necessary, it is typically beneficial to use a preexisting force
field as a starting point. These force fields exist for a variety of
applications.42,43,74,76,77 For example, several different force

fields exist to model proteins, such as AMBER and
CHARMM.76,78 Whether the force field is bespoke or generic,
the force field must be appropriate for the system under
consideration. If a key interaction is not contained in an
existing force field, a researcher must either add it to the force
field manually or generate a custom force field.
For modeling organic systems, certain choices for the style

of interaction used in the force field are standard (Figure 5).
While the available types of atoms (usually differentiated by
hybridization, e.g., sp2, sp3) and the associated parameters
differ, the same general structure is used by common force
fields (e.g., CHARMM, OPLS, AMBER).69,76,78 For example,
van der Waals interactions between nonbonded atoms are
usually treated as interacting using Lennard−Jones 12−6
potentials. On the other hand, covalent bonds are defined
between pairs of atoms in relatively close proximity, where the
quantum mechanical electron-pairing force is described using a
harmonic spring-like interaction. Similarly, for three atoms
bonded in a linear fashion, angles are also defined to enforce a
specific local geometry. Another common type of interaction in
simulations of organic molecules occurs between four atoms.
These interactions are generally called torsions. Here, we
differentiate two main types: conventional dihedral and
improper dihedral angles. Conventional dihedral angles are
simple torsional angles between four atoms connected in a
linear fashion (as defined in a basic organic chemistry course).
Improper angles occur when three atoms are connected to
another central atom and are often used to enforce planarity
(e.g., in ammonia).
In contrast to organic materials, the behavior of inorganic

materials is described by force fields of fundamentally different
forms.59,61−67 The behavior of inorganic materials is highly
dependent on the presence of metallic bonds (and bonds to
metal atoms) as opposed to covalent bonds in organic systems.
To more accurately describe such systems, these force fields
often employ generator functions that encode�or “embed”�
the quantum mechanical electron density. Covalent-style
interactions (i.e., bonds, angles) are often eschewed entirely
in favor of these generators that depend only on distance.
While a force field is a convenient construct for the

approximation of necessary intermolecular forces, which forces
qualify as “important” in a system remain at the discretion of
the researcher. For example, when describing weak van der
Waals interactions, a researcher may consider London
dispersion interactions between pairs of atoms. Alternatively,
they might consider more complicated functions that
incorporate contributions from many-body (e.g., three or
four neighbor) interactions.59,65−67 However, more complex
force fields require more computational power, and thus,
researchers must decide whether the additional accuracy is
worth the additional computational cost. Alternatively, force
fields may be eschewed entirely in favor of a quantum
mechanical calculation.22,23 Quantum mechanical calculations
provide significantly greater accuracy when determining the
energy (and thus forces) of a system. In addition, specific
approximations for all relevant types of interactions (i.e.,
bonds, angles) within a system would no longer be needed.
Rather, the relevant behaviors of the system will emerge
naturally from the solution of the Hamiltonian. The trade-off
is, once again, that these ab initio calculations are substantially
more computationally intensive to perform. Thus, to counter
this increased computational cost, the number of atoms in the

Table 1. List of Commonly Used Force Fields

force field primary use ref

AMBER biomolecules, proteins 79−81
CHARMM biomolecules, proteins 68,76,82,83
OPLS organic liquids, general organic molecules 84−86
REAX-FF reactive force field for bond formation and

breaking
59,87,88

Drude polarizable force field 89−91

GROMOS hydrocarbons, biomolecules 70,92−95
AMOEBA polarizable force field developed for

biomolecules
96−99

MEAM embedded atom force field for inorganics 100
UFF general force field to apply to any arbitrary

system
58

DREIDING general force field to apply to any arbitrary
system

60,101,102

MARTINI coarse-grained force field for large
simulations to lump together like atoms

103
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system or length of time simulated generally must be
decreased.
1.1.3. Creating the Software and Hardware Input Files.

The next step is to run the simulation using specialized MC or
MD software programs. For research-quality simulations, a
researcher typically uses a supercomputer, a collection of high-
quality hardware which runs a simulation with many
computational resources (advanced processors and memory
architectures). To maximize the efficient use of any such
system, the software and hardware both require sets of
instructions. We will discuss these input files together, though
they take quite different forms. Generally speaking, the
software input file is a set of instructions for actually running
the simulations. It defines the thermodynamic state functions
of interest (i.e., the temperature and pressure of interest in the
model). The hardware input is a set of instructions that
dictates what physical resources (e.g., processors and memory)
are used to run the simulation (Figure 5).
A wealth of crucial information is contained in a software

input file: what force field to use, how much time to simulate,
which conditions to implement (e.g., boundary conditions,
constraints such as temperature or pressure), which changes
affect the simulation, and what is outputted from the program
(Figure 6a). The parametrization of a force field can range in
difficulty depending on the complexity of the system and the
availability of parametrized potentials of interest. Generally
speaking, the parameters of interactions are difficult to
generate, so it is recommended to use an existing force field
if possible. In the simplest case, the required functional forms
are already supported in the MC or MD software, so using an
existing force field can be relatively straightforward. For
example, if the pairwise van der Waals interactions of the force
field are in a Lennard−Jones style, they can be implemented
using specific keywords in the software input file of most
simulation packages (Table 2).
The next decision a researcher must make regards what

external conditions to simulate. A natural choice is to attempt
to mimic the relevant experimental conditions. Simulations can

be run with constant pressure (P) or volume (V), constant
temperature (T) or energy (E), and a constant number of
particles (n) or chemical potential (μ). These choices define
the statistical mechanical ensemble of the simulation. A
summary of common ensembles is shown in Table 3.
The ensemble corresponds to specific constraints imposed

on the system, and the relevant thermodynamic properties of
the system (e.g., pressure, temperature, heat capacity) all have
unique definitions in each ensemble. An ensemble is
judiciously chosen such that it is relevant to the true
experimental system being considered. For example, to
understand the physical properties of a gas in a closed
container, a researcher might run a simulation at constant
temperature, T, volume, V, and number of particles, N (i.e., the
canonical ensemble). The choice of the ensemble is specified
in the software input file.
The final consideration is how the system may be modified

during its simulation. A wide variety of changes may happen to
the system, e.g., it could be heated, cooled, stretched, or
compressed, and the simulation should reflect these changes by
including appropriate keywords in the software input file.
However, it is crucial that these modifications be made with
the time scale of simulation in mind. Evolution in structure
caused by, for example, heating or stretching actually takes
place over the course of milliseconds (at least). Except in very
special cases, such time scales are inaccessible to atomistic
simulations employing common force fields. To compensate, a
researcher might be inclined to heat or cool the system very
rapidly. However, this invariably leads to unwanted physics,
e.g., superheating or supercooling, that does not realistically
depict the processes involved (e.g., bond rotation to
accommodate strain instead of bond stretching, diffusion of
materials under heat). Therefore, obtaining values from any
nonequilibrium process requires judicious care.
The hardware input file instructs the supercomputer which

tasks to perform and how to perform them (i.e., how many
hardware CPUs or GPUs to use, Figure 6b). Simulations will
generally run faster if more supercomputing resources are used,

Figure 5. Types of interactions in a standard force field (e.g., force field for proteins or hydrocarbons). Generic forces between almost all atoms in
the system, particularly van der Waals interactions, are shown in yellow. For other interactions, atoms undergoing forces are defined in blue, while
other atoms in the system are shown in red. Nonbonded atoms experience electrostatic forces typically modeled using dispersion and Coulombic
terms. Dispersion term typically accounts for the Pauli repulsion force at short distances and London dispersion forces at intermediate distances.
These forces are usually described using a Lennard−Jones potential. For systems where atoms have partial atomic charges, the atoms experience
Coulombic interactions. In addition, atoms that are chemically bonded to one another experience other forces and interact based on their distance
apart (usually with a harmonic function). Three atoms that are bonded in a linear fashion interact with a potential based on the angle with respect
to the central atom. Four atoms that are bonded in a linear fashion interact with a potential based on their orientation about the central bond, called
a dihedral interaction. Improper angles are torsions created when one atom is bonded to three other atoms and a specific orientation (e.g.,
planarity) is required (full view). Potential is calculated based on the angle between one atom and the plane defined by the other three atoms
(plane-aligned view).
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but the relationship between the number of supercomputing
resources used and the required simulation time is typically
sublinear.121,122 In other words, if twice the amount of the
supercomputer resources are used, the simulation will run

faster but not quite twice as fast. This sublinear relationship
occurs because simulations running on multiple processors
typically break the tasks up into parallel duties. This
parallelization requires that the processors communicate with
one another, thus increasing the workload. As more processors
are added, the speedup often becomes increasingly sublinear as
the amount of computational time dedicated to communica-
tion between processors increases. Another factor is that some
processes cannot be parallelized. Because supercomputer
facilities are shared resources, a scheduler (e.g., the program

Figure 6. LAMMPS input to the simulation (a) software and (b) hardware input files. (a) Software input file is split up into three parts: (1)
description of the system, (2) description of how to propagate the system, and (3) description of the stopping condition. Part 1 lists the relevant
units used to represent the structures as well as all types relevant interactions (Lennard−Jones and Coulombic interactions for the above example).
Part 2 describes the time step used for the calculation and the thermodynamic ensemble used for the calculation (defined in terms of constraints).
Finally, part 3 specifies when to stop the calculation and what internal postprocessing should be done. (b) Hardware input file with information
separated into three parts. Various supercomputing centers use different schedulers. Here, we provide example input using the SLURM
scheduler.104 In part 1, we define the basic parameters of the job, such as the name of the job, the place to put hardware output information, and
how long to run the job for. In part 2, the hardware is instructed to update environment variables in order to access (“load”) the necessary software
for the simulation. In part 3, the supercomputer is instructed to run the simulation.

Table 2. List of Commonly Used MD and MC Codes

software primary use ref

LAMMPS general MD, highly modifiable 105
NAMD general MD, highly optimized 106
GROMACS MD designed for biomolecules 107
CHARMM MD designed for biomolecules 108
AMBER MD designed for biomolecules 109,110
TINKER general MD and MC 111
ABALONE general MD and MC, primarily for

biomolecules
112,113

BOSS general MC 114
CP2K ab initio MD 26
Q MD implementing quantum behavior 115
DESMOND software for MD 116
Materials Studio software for MD and MC 117
Hoomd Blue software for MD and MC 118,119
MCMD software for MD and MC 120

Table 3. Summary of Common Statistical Mechanical
Ensembles for Computational Simulations

ensemble name
variables
(const.) example

canonical NVT gas molecules in a closed container
microcanonical NVE gas molecules in a closed and insulated

container
grand canonical μVT gas molecules in an open container
isobaric−isothermal
(Gibbs)

NPT gas molecules in a closed container
sealed by a moving piston

isoenthalpic−isobaric
(enthalpy)

NPH gas molecules in a closed and insulated
container sealed by a moving piston
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which prioritizes different users of a supercomputing center) is
typically used to allocate supercomputer resources. Much like a
chemist might wait for the completion of a reaction or a
materials scientist might wait for communal characterization
tools to become available, simulation requests are generally
queued until the requested resources (e.g., processors, nodes)
become available. For this reason, requesting more resources
on a supercomputer often means a longer queue time.
Therefore, the “real” time required for a simulation might
even increase if too many resources are requested, despite the
speedup of the simulation itself.
As a final note on both software and hardware, the MC or

MD software must be compiled in a specific way to optimize
performance on the supercomputer. Sometimes, a super-
computer will have MC or MD software already available and
optimized. However, if this is not the case or if a researcher
wishes to use specialized packages or functionalities in the
software, they must compile the software themselves. In this
case, we recommend simply reaching out to the technical
support of the supercomputer for advice on how to compile
the software. If specialized compilation is required or resources
are not available to assist with compilation, any documentation
for the package should be sought out and followed. If no such
documentation is easily available, reaching out to the creators
of the package is typically a fruitful endeavor. Finally, a variety
of packages exist for accelerating the performance of the
software on the supercomputer. Each package typically has
information about how they speed up different types of
simulations in the user manual, and this should be consulted
for best results.
1.2. Step 2: Running the Simulation. Once the

simulation begins, little input is typically required of the
researcher. As such, the choice of which software to use is most
important. Researchers must balance competing interests of
time and customizability. Scientists often look at novel systems
that are not yet well understood, and these novel systems may
require modification of existing software to handle interactions
of interest. Some systems will be better suited to handle
modifications, although at times the modifications will come at
the expense of computational efficiency. However, this is
general advice, and every situation is different. For a software
package to provide the desired performance, a researcher must
understand the particular needs and goals of their simulation.
Until now we have focused on simple molecular dynamics or

Monte Carlo simulations, which are somewhat limited in their
usefulness. Conventional MD simulations are often run on the
order of nanoseconds. Monte Carlo simulations are similarly
run for enough time steps to explore local minima but not to
explore all accessible energy states. A variety of newer methods
have been developed for modified versions of MC or MD
simulations to explore time and space more rapidly, allowing
the simulation to garner more data without a significant
increase in computational time.37,123−131 These methods�
termed “advanced sampling” methods�are useful for collect-
ing more complete sets of data. For example, techniques such
as metadynamics and parallel tempering can help explore
energy surfaces with rugged free energy surfaces.132−135 These
techniques can increase the speed for simulations to randomly
sample a rare event or transition, which would ordinarily
require a long simulation time. That said, the researcher must
ensure that an advanced sampling method of interest is
compatible with or easily incorporated into their simulation

program or else undertake the (sometimes laborious) process
of converting to another code.
1.3. Step 3: Analyzing the Simulation Data. Having

successfully run the simulation, all that remains is to collect
and organize the data into an understandable format. The raw
output of an MC simulation that is returned to the user is the
position of every atom in every conformation. For an MD
simulation, the equivalent output is the position of every atom
at every time step. The resulting data often requires
postprocessing. For example, the physical properties of a
system are often derived from distributions or averages over
the trajectories of the atoms during the course of a simulation.
Likewise, if dynamical information (e.g., characterizing
transition pathways between conformations of a molecule) is
needed, data visualization methods can be used to map
trajectories of a component (e.g., atom, molecule) within the
system. Some simulation codes have built-in analysis
capabilities, allowing the user insight into the system as the
simulation proceeds. Alternatively, data analysis must be
performed afterward with commercial, open source, or
custom-made software. The code used for analysis can range
greatly in complexity. For example, a fairly straightforward
script can be used to calculate the average morphology of a
polymer by means of the radius of gyration, while more
complicated calculations can be done to determine far more
complex material properties. For example, if the system in
question is being stretched, a program can be written to
calculate the stress tensor on the system as a whole or atom by
atom. For a polymer system, the crystallinity can be derived
from knowledge of every atomic position. In a protein, changes
to the shape of the active site or measurement of ligand
binding affinity can be calculated. For inorganic systems,
thermodynamic quantities or information about the crystal
structure can be extracted from a simulation.
1.4. Example: Small-Molecule Drug Discovery. To

place concepts described in this Protocol into context for
experimentalists, we provide an example describing how these
processes translate to real-world applications. We focus on a
use case that has yielded experimental, tangible results: the use
of computation simulations for guiding the design of small
molecules for drug discovery. To contextualize these concepts,
we focus on how such simulations are designed and performed
by computational scientists.
Nearly every major pharmaceutical company now incorpo-

rates computational tools into their drug discovery workflow or
pipeline. Atomistic simulations, and thus models, are routinely
used in this drug discovery process. One particular computa-
tional method is of particular ubiquity: free energy
perturbation (FEP) simulations, which can be used (among
many applications) to predict how strongly a ligand binds to
the active site of a protein. While this Protocol describes the
FEP process at a high level, a vast library of studies provide
significantly greater detail regarding procedures and applica-
tions.136−140

When orchestrating a FEP simulation, the mechanics of the
simulation must be first considered. In this example, a FEP
simulation is used to describe the binding affinity of a small
molecule to a protein active site. Thus, a force field that
accurately describes the interactions typical to the binding site
and small molecule is necessary. For example, a force field that
does not accurately handle hydrogen bonding will render a
simulation unhelpful when modeling highly hydrophilic ligands
or binding sites. Alternatively, a binding site that coordinates to
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a metal will likely require use of a special force field in order to
accurately describe the interactions of metals and their d
orbitals.
To obtain accurate information about the system of interest,

a data file that considers all relevant components must be
constructed, the two most important components of which are
the small molecule and the protein binding site of interest.
However, additional chemical moieties are also likely required
to be included in the system. For example, the full protein
might be included as well if other regions of the protein will
likely affect how the shape of the binding site changes and
adapts when bound by a small molecule. In addition, because
the environment will affect interactions between the protein
and the small molecule, water must be included as well. Thus, a
computational scientist might choose to construct a simulation
in which the system is defined as the protein and the small
molecule surrounded by water molecules (at a specific
density). In this data file, interaction constants (e.g., sigma
and epsilon for Lennard−Jones interactions, spring constants
for bonded interactions) will also be assigned based on the
force field selected. If an automated (e.g., in-house) method for
assigning force field parameters to a biochemical simulation
exists, that will be implemented at this stage. If no such
automation exists, the process of assigning force field
parameters becomes far more difficult. The computational
scientist will either need to manually assign the parameters or
(much more likely) develop their own process for assigning the
parameters of the chosen force field.
Next, the parameters of the simulation must be defined in

the software input file. In this FEP simulation example, two key
parameters are of significant interest: (1) the amount of
simulation time (i.e., time scale) the simulation is performed
over and (2) any restraints that allow for a more rapid binding
of the small molecule to the active site. These two parameters
must be judiciously chosen based on the specifics of the
system; here, it is sufficient to know that this information is
determined by descriptors in the software input.
Finally, the hardware input must be specified, and several

considerations must be made regarding how the simulation will
be run. For example, the availability of hardware is a key
constraint when considering how to run the simulation. Access
to a local cluster, supercomputer, or similar cloud computing
resources typically allows the researcher to default to that
hardware of choice. In addition, access to specialized hardware
resources (e.g., GPUs) must be taken into account at this
stage. Likewise, the software being utilized should be capable
of taking advantage of the hardware resources available in
order to maximize efficiency. With these three inputs
completed, an FEP simulation is ready to be run.

■ CONCLUSIONS
We have now walked through the entire process of performing
a simulation for material systems, from the types of
information required as inputs, to running the simulation, to
the analysis of the output. This Protocol has focused on force
field-based, classical atomistic simulations, but the workflow
presented is similar for many other types of simulations. As
advancements in computing technology have greatly improved
the accessibility of computational simulations for research
purposes, the interwoven relationship between experimental
and computational research has become increasingly syner-
gistic. Computational scientists require the collaboration of
experimentalists to validate and refine their models. Exper-

imentalists require microscopic insights into material structure
and morphology that can be accessed from such simulations,
that is, in the last several decades, the boundaries between
experimentalists and computational scientists have blurred, and
it has become increasingly common for researchers to be
familiar with both. This synergy is beneficial to modern data
science approaches (e.g., machine learning) that are of interest
to chemical, biological, and materials research. Yet, practical
improvements in advanced statistical models require further
advancements in both experimental characterization and
computational models. In addition, the interdisciplinary nature
of research has greatly expanded. It is now commonplace for
one research group to have research interests spanning several
fields of study and for individual researchers to be involved in
multiple projects that differ greatly in focus. As stated, the
general workflow described in this Protocol is widely
applicable, and our overarching goal was to offer experimen-
talists useful foundational knowledge for developing highly
translatable computational skills for any material system.
Should experimentalists desire to deepen their knowledge of

the methods described in this Protocol or to begin
incorporating these methods into their own work, we have
included a list of further resources.11,22,141−144 Much of our
discussion in this Protocol has been focused on the decision-
making process, largely centered around the trade-offs between
simulation accuracy, simulation time, and supercomputer
resources. In doing so, we hope to help experimentalists
translate the intuition they already have to those familiar to
computational studies, as it is not difficult to draw comparisons
between the two. To give an example, if a researcher wished to
control an experiment to the greatest level of accuracy possible,
an experimentalist would degas every solvent, recrystallize
every reagent, control the physical environment to immeasur-
able precision, and take measurements over the course of hours
or days. Yet, this is typically not done because the trade-off
between time spent and experimental outcome can be
prohibitively unfavorable. In a similar vein, we introduced
several general relationships between computational resources
available and the simulated system of interest that affect the
trade-offs we describe in this Protocol. In doing so, we hope to
help experimentalists develop a high-level understanding of the
advantages, disadvantages, capabilities, and constraints of
computational work. Likewise, we hope that our explanation
of the simulation process will be useful for experimentalists
interested in incorporating computational data in their own
work or for those whose work overlaps with that of
computational scientists or, if this is not possible, to at least
spare our computational colleagues from the question why is
your simulation taking so long?
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