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ABSTRACT
The Kauzmann temperature (TK ) of a supercooled liquid is defined as the temperature at which the liquid entropy becomes equal to that
of the crystal. The excess entropy, the difference between liquid and crystal entropies, is routinely used as a measure of the configurational
entropy, whose vanishing signals the thermodynamic glass transition. The existence of the thermodynamic glass transition is a widely studied
subject, and of particular recent interest is the role of dimensionality in determining the presence of a glass transition at a finite temperature.
The glass transition in water has been investigated intensely and is challenging as the experimental glass transition appears to occur at a
temperature where the metastable liquid is strongly prone to crystallization and is not stable. To understand the dimensionality dependence
of the Kauzmann temperature in water, we study computationally bulk water (three-dimensions), water confined in the slit pore of the
graphene sheet (two-dimensions), and water confined in the pore of the carbon nanotube of chirality (11,11) having a diameter of 14.9 Å (one-
dimension), which is the lowest diameter where amorphous water does not always crystallize into nanotube ice in the supercooled region.
Using molecular dynamics simulations, we compute the entropy of water in bulk and under reduced dimensional nanoscale confinement to
investigate the variation of the Kauzmann temperature with dimension. We obtain a value of TK (133 K) for bulk water in good agreement
with experiments [136 K (C. A. Angell, Science 319, 582–587 (2008) and K. Amann-Winkel et al., Proc. Natl. Acad. Sci. U. S. A. 110, 17720–
17725 (2013)]. However, for confined water, in two-dimensions and one-dimension, we find that there is no finite temperature Kauzmann
point (in other words, the Kauzmann temperature is 0 K). Analysis of the fluidicity factor, a measure of anharmonicity in the oscillation of
normal modes, reveals that the Kauzmann temperature can also be computed from the difference in the fluidicity factor between amorphous
and ice phases.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0047656., s

I. INTRODUCTION

Water is the most abundant liquid on the planet and plays
an important role in determining properties of interest in diverse
contexts. It is also a liquid with a wide range of peculiar, or anoma-
lous, properties, which have been widely studied. Of particular inter-
est have been the properties of amorphous solid phases—water
exhibits at least two clearly distinguishable amorphous phases, the
low density and high density amorphous solid forms, which are now

understood to be associated with the presence of a liquid–liquid
transition. Investigating the glass transition1–4 in water experimen-
tally has been challenging as it appears to occur in a temperature
range where the supercooled liquid is not stable with respect to
crystallization, the so-called no man’s land.6,8–10 The glass transi-
tion in water is generally believed to occur at around T = 136 K,
and the highly viscous liquid has been observed in a narrow tem-
perature range up to ∼150 to 160 K above which it rapidly crystal-
lizes.5,13–15 Although liquid water in computer simulations does not
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crystallize as readily, simulating water in the relevant temperature
range is challenging22 because of the extremely slow dynamics.23

Water is also expected to display a fragile-to-strong crossover in
the temperature dependence of its relaxation dynamics (associated
with the so-called “Widom line”), which makes extrapolations from
higher temperature behavior difficult. Nevertheless, computer sim-
ulations have been employed to characterize both the crossover in
behavior around 200 K and the glass transition around 136 K.22

There has been considerable interest in studying water under
conditions of confinement20,21 for a variety of reasons, including
the fact that water in biological environments often occurs under
strongly confined conditions. Such confinement affects the dynam-
ics of water strongly and may correspondingly be expected to influ-
ence the glass transition behavior. Water (or other liquids) in con-
finement corresponds to realizations of liquids in effectively lower
spatial dimensions, and thus, their study also is directly relevant to
how spatial dimensionality affects glass transition behavior. In par-
ticular, whether a finite thermodynamic glass transition exists in
dimensions less than three has recently been addressed. We address
this question by studying thermodynamic aspects of bulk water,
alongside water in two- and one-dimensional confinements. In par-
ticular, we study the excess entropy of liquid (or amorphous) water
and evaluate the Kauzmann temperature.

In 1948, Kauzmann calculated the difference between the
entropy of liquid and crystal phases, the excess entropy, as a
function of temperature and reported that the excess entropy
decreases rapidly with temperature in the supercooled region.11,16–18

By extrapolation, the excess entropy was shown to vanish at a finite
temperature for a variety of substances, an intriguing observation
referred to as the Kauzmann paradox. The temperature at which the
extrapolated excess entropy vanishes,

ΔS(TK) = Sliq(TK) − Scry(TK) = 0, (1)

is termed as the Kauzmann temperature. Kauzmann proposed that
a supercooled liquid would go through a glass transition above
the temperature where liquid entropy becomes equal to the crys-
tal entropy as one possible resolution of the Kauzmann paradox.
Subsequent research associates the vanishing of the excess entropy
(or, more appropriately, the configurational entropy) as a marker
of a thermodynamic glass transition. The excess entropy is rou-
tinely employed as an estimate of the glass transition temperature.
Experimentally, the Kauzmann temperature has been estimated to
be around 136 K,12,16,17 which is ∼1/2 of the melting temperature,
TM (273 K), at variance with typical glass formers, and the sig-
nificance of this lowered value of the glass transition has been
analyzed.22

To investigate the role of confinement on the glass transition in
water, we compute the excess entropy of bulk water, water confined
in two-dimensional geometry, between graphene sheets, and in one-
dimensional confinement, within carbon nanotube. The entropies
of ice and amorphous phases are evaluated using the 2PT proce-
dure.44,62 For bulk water, we estimate the Kauzmann temperature
around 136 K, and we observe a crossover in the behavior of the
excess entropy around 200 K, consistent with previous work. In con-
trast, in one- and two-dimensional confinement, we find the excess
entropies to be small at all temperatures (comparable to the values in
the temperature range below 200 K for bulk water) but remain finite
at all finite temperatures. Thus, our investigation reveals that there

exists no finite Kauzmann temperature for confined water. The con-
clusions drawn from the study of excess entropy are corroborated by
the behavior of fluidicity, a quantity that characterizes the fluid-like
component of the estimated entropy in the 2PT method.

II. MD SIMULATION DETAILS
Atomistic molecular dynamics (MD) simulations were per-

formed for bulk and confined water by using TIP4P-2005f, a flexible
version of the TIP4P-2005 water model,25 which is known to repro-
duce various water properties very accurately over a wide range of
temperatures.26,29,30 Most of the results for the TIP4P-2005f model
are in line with its rigid predecessor,49 with a 4○ improvement in
melting temperature (254 K). Although the melting temperature of
the TIP4P-2005 water model (250 K) is ∼23 K lesser than the exper-
imental value (273 K), the glass transition temperature calculated by
Saito and Bagchi27 (135 K) agrees very well with the experimental
value (136 K).12,16,17,52

Simulation was performed for bulk water in the amorphous
(liquid) phase and hexagonal ice phase in three-dimensions (hence-
forth referred to as 3D) and amorphous water and ice confined
inside the graphene slit pore (henceforth referred to as 2D) and
inside the channel of the CNT of chirality (11,11) (henceforth
referred to as 1D). The initial configurations of ice phases of water
are shown in Fig. 1. MD simulation was performed for hexagonal ice
of 432 water molecules at 5 K in the NPT ensemble. After 50 ns NPT
simulation, the final configuration from a 5 K temperature run was
used as input to the next higher temperature of 100 K and so on. This
sequential heating protocol was followed by other simulations at
100, 140, 170, 230, and 270 K. NVT simulations were performed for
50 ns using the equilibrated density in the NPT ensemble. Another

FIG. 1. Initial ice structure for (a) bulk hexagonal ice, (b) two-dimensional square
ice inside the graphene slit pore, (c) nonagon ice (9 chain), and (d) nonagon ice
with a central chain (9+1 chain) inside the CNT of chirality (11,11).
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set of 500 water molecules was cooled from 300 to 5 K through the
temperature 280, 275, 270, 250, 240, 235, 230, 225, 222, 220, 215,
205, 202, 197, 190, 180, 170, 160, 150, 145, 135, 130, 125, 120, 110,
100, and 5 K. Here, we applied a sequential cooling protocol, where
the final configuration from a particular temperature run was used
as input to the next lower temperature. Simulations of length 100 ns,
250 ns, and 500 ns were run for temperatures above 220 K, from 220
to 180 K, and below 180 K, respectively, which was followed by a
10 ns NVT run. The velocity-rescale28 thermostat and Parrinello–
Rahman barostat were used in NPT simulation with 1.3 ps and
2.3 ps coupling constants, respectively. The calculated density of
bulk water as a function of temperature is plotted in the upper panel
of Fig. 2 and is found to be in good agreement with reported results
in the literature.22,49

We also performed simulations with the CNT of chirality
(11,11) and a 4 × 4 nm2 graphene nanoslit pore embedded in a water
bath. Snapshots of the initial ice structures inside the (11,11) CNT
and the graphene nanoslit pore are shown in Fig. 1. The initial struc-
tures were constructed based on previously reported structures.31–34

These ice structures inside single walled CNTs are varied31–37 and
depend strongly on the CNT diameter. They may comprise either
an empty ice shell (ice nanotubes) or an ice shell wrapping a cen-
tral single file water chain along the axis of the CNT (Fig. 1). For
the 2D Ice structure, we chose the recently reported “square-ice”
motif.38–41 We initiated each ice simulation at 5 K with the initial ice
structures solvated in a water box with 15 Å water layers in all the
three directions. We performed the initial conjugate gradient energy
minimization to remove bad contacts. Three sets of simulations were
performed for square ice, nonagon ice, and nonagon ice with a cen-
tral chain at 5, 30, 60, 100, 140, 170, 200, 230, 270, and 300 K using
the sequential heating protocol. In each case, we performed 40 ns
NPT simulation followed by a 10 ns NVT run. For the amorphous
phase, another set of simulations was performed for the CNT and

FIG. 2. Temperature dependence of density for the bulk phase (upper panel) of
water while lowering the temperature from 300 to 5 K (red) and heating the hexago-
nal ice from 5 to 270 K (black), (middle panel) density of water, inside the graphene
slit pore, which forms square-ice (black) and 2D amorphous (red) phases, and
finally (lower panel) density of water while lowering the temperature (red) from 400
to 10 K and while raising the temperature for nonagon ice (blue) and nonagon ice
with a central chain (black) structured system in the (11,11) CNT.

graphene nanoslit pore embedded in a bath of water. We cooled the
system, starting from 400 K, in a 10 K interval per 40 ns NPT simu-
lation using the sequential cooling protocol down to 10 K, followed
by 10 ns NVT simulation. The graphene slit-pore and CNT were
restrained throughout the simulation using the harmonic restraint
with a spring constant of 1000 (kJ/mol)/nm2. The total number of
water molecules in the square-ice system is 5108 (water molecules in
the bath are also included). Similarly, nanotube-ice systems (includ-
ing the bath waters) have 4383 and 4433 molecules for nonagon ice
and nonagon ice with a central chain, respectively. For the amor-
phous case, simulated systems had 5013 and 3989 water molecules
for the graphene nanoslit and (11,11) CNT, respectively. After
10 ns NVT simulation, additional sets of NVT simulations of 100
ps were performed, with the trajectory (atomic positions and veloc-
ities) saved at every 2 fs interval. The entropy was then computed
from post-trajectory analysis using an in-house code that imple-
ments the 2PT method. The reported values were obtained from
statistical averaging over 5 independent sets of trajectories, similar
to our previous studies on confined water.24,37,42,43

III. METHOD
The entropy of bulk and confined water molecules was calcu-

lated using the Two-Phase Thermodynamics(2PT) method.44,62 The
calculated entropy using the 2PT method quantitatively agrees well
with the available experimental results over a wide range of temper-
ature. The 2PT method also gives entropy values in close agreement
with values obtained from free energy perturbation (FEP) and other
approximating schemes such as finite difference (FD) and nearest-
neighbor pair correlation functions (NN) also. In 2PT, one assumes
that the thermodynamic properties of liquids can be computed by
treating the DOS of a liquid as a sum of solid-like [gs(ν)] and gas-
like [gg(ν)] contributions. Thermodynamic quantities for a solid can
be computed by treating its phonon modes as non-interacting har-
monic oscillators, as in the Debye model.45 However, the gas part
is described as an exponentially decaying function of a low-density
hard-sphere fluid,45 for which one can compute the DOS analyti-
cally.46,47 Based on the above description, Lin et al.44,62 reported very
accurate thermodynamic properties of Lennard-Jones fluids, over
a wide range of thermodynamic state points, using the DOS func-
tion obtained from only a 20 ps MD trajectory. In the latter work,
Lin et al.62 demonstrated that for polyatomic fluids, the decomposi-
tion scheme can be implemented to compute the rotational entropy
as well. Here, we provide a brief description of the 2PT method.
Readers are referred to the original papers44,62 for further details. In
2PT, the total entropy is written as the sum of various components
as follows:

S = SS
trans + Sg

trans + SS
rot + Sg

rot + Si−vib, (2)

where SS
trans and Sg

trans are the solid-like and gas-like components
of translational entropy, respectively; similarly, SS

rot and Sg
rot are

the solid-like and gas-like components of rotational entropy; and
Si−vib is the internal vibrational entropy. The first two terms arise
from translational motion, the third and fourth terms are associated
with rotational motion, and the last term is associated with internal
vibrational motion of the H2O molecule.

J. Chem. Phys. 154, 164510 (2021); doi: 10.1063/5.0047656 154, 164510-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Here, we discuss the translational components of entropy [first
and second terms in Eq. (2)]. A similar treatment can be imple-
mented for the rotational and vibrational components of the entropy
(details are in Ref. 62).

As discussed above, under the harmonic approximation, the
solid-like translational entropy can be defined as

SS
trans = ∫

∞

0
gS(ν)WS

HO(ν)dν, (3)

where gS(ν) is the density of states for nondiffusive solid-like vibra-
tions, which can be computed using Eq. (5) for the atomistic density
of states and Eq. (13) for the fluidicity factor f. WS

HO(ν) is the weight
function for the entropy of a quantum harmonic oscillator [Eq. (17)].

Similarly, the gas-like translational entropy can be written as

Sg
trans = ∫

∞

0
gg(ν)Wg

HS(ν)dν, (4)

where gg(ν) is the density of states for gas-like diffusive density of
states, which can also be obtained from the decomposition of the
density of states and the fluidicity factor f. Wg

HS(ν) is the weight
function for the entropy of the hard sphere gas [Eq. (18)].

We know that the density of states, g(ν), can be computed from
the Fourier transform of the translational velocity autocorrelation
function44,62

g(ν) = 2
kBT

N

∑
j=1

3

∑
k=1

mjsk
j (ν), (5)

where mj is the mass of the jth atom, k denotes the three Cartesian
directions, and sk

j (ν) are the atomic spectral densities given by the
following equation:

sk
j (ν) = lim

τ→∞
∣∫ τ
−τ v

k
j (t)e−i2πνtdt∣2

∫ τ
−τ dt

= lim
τ→∞

∣∫ τ
−τ v

k
j (t)e−i2πνtdt∣2

2τ
, (6)

where vk
j (t) is the velocity component in the kth direction of the

jth atom. It can be demonstrated that the atomic spectral density,
sk

j (ν), can be obtained from the Fourier transform of the velocity
auto-correlation function (VACF) ck

j (t),44

sk
j (ν) = lim

τ→∞∫
τ

−τ
ck

j (t)e−i2πνtdt, (7)

where ck
j (t) is given by

ck
j (t) = lim

τ→∞
1

2τ ∫
τ

−τ
vk

j (t + t′)vk
j (t′)dt′. (8)

Thus, Eq. (5) can be rewritten as

g(ν) = 2
kBT

lim
τ→∞∫

τ

−τ

N

∑
j=1

3

∑
k=1

mjck
j (t)e−i2πνtdt. (9)

More generally, it can be written as

g(ν) = 2
kBT

lim
τ→∞∫

τ

−τ
C(t)e−i2πνtdt. (10)

In the above equation, C(t) can be either the mass-weighted transla-
tional velocity auto-correlation function (VACF) determined from
the center of mass velocity Vcm

i (t) of the ith molecule,

CT(t) =
N

∑
i=1
⟨miVcm

i (t).Vcm
i (0)⟩, (11)

or the moment-of-inertia weighted angular velocity auto-correlation
function

CR(t) =
3

∑
i=1

N

∑
i=1
⟨Iijωij(t)ωij(0)⟩, (12)

where Iij is the moment-of-inertia tensor andωij is the angular veloc-
ity of the jth component of the ith molecule. Depending on the use
of CT(t) or CR(t) in Eq. (10), one can obtain the translational or
rotational DOS.

Drawing inspiration from an idea of Eyring in his thesis on
significant structure theory,48 Lin et al.44 proposed a self-consistent
partitioning factor, denoted as fluidicity factor f, based solely on
the system’s diffusivity compared to a gas of hard spheres at the
same density and temperature. The DOS is decomposed into a solid-
like non-diffusive component and a gas-like diffusive component,
g(ν) = gS(ν) + gg(ν), using the fluidity factor f, which is a measure of
the fluidity of a system. f is calculated in terms of the dimensionless
diffusivity Δ using the universal equation44

2Δ−9/2f 15/2 − 6Δ−3f 5 − Δ−3/2f 7/2 + 6Δ−3/2f 5/2 + 2f − 2 = 0. (13)

The hard sphere diffusivity, Δ, can be uniquely determined for a
thermodynamic state of the system using the following equation:

Δ(T, ρ, m, g0) =
2g0

9N
( 6
π
)

2/3
(πkBT

m
)

1/2
ρ1/3, (14)

where g0 = g(0) is the zero-frequency component of the DOS func-
tion (translational or rotational). Obtaining f from Eqs. (13) and
(14), the gas-like diffusive component of the DOS can be obtained
using a hard-sphere diffusive model,

gg(ν) = g0

1 + [ πg0ν
6fN ]

2 . (15)

Lin et al.62 employed the gas–solid decomposition scheme for rota-
tional entropy as well.62 They demonstrated that for polyatomic flu-
ids, the decomposition scheme can be implemented on rotational
motion with a different fluidity factor (f ) based on the rotational
diffusivity in Eq. (10). Then, the gas-like components of entropy,
also known as configurational entropy (Sconf ), are calculated using
Eq. (15) with g0 being gtran(0) or grot(0) for the translational and rota-
tional cases, respectively. Given such a decomposition of DOS, one
can compute any thermodynamic quantity Am from the solid-like
and gas-like DOS functions with the corresponding weight functions
as follows.

Am = β−1[∫
∞

0
gg

m(ν)W
g
A,mdν + ∫

∞

0
gs

m(ν)W
s
A,mdν], (16)

where m stands for translational, rotational, or vibrational motion.
The weight function for entropy is defined as
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TABLE I. Density (in g/cc) of bulk and confined water for all the systems studied in this work.

Temperature 3D 3D 2D 2D 1D 1D 1D
(K) (ice) (amorphous) (ice) (amorphous) (9 chain ice) (9+1 chain ice) (amorphous)

5 K 0.9614 ± 0.0002 0.9714 ± 0.0006 0.9764 ± 0.0089 ⋯ 0.8965 ± 0.0022 1.0101 ± 0.0017 ⋯
10 K ⋯ ⋯ ⋯ 0.8138 ± 0.0022 ⋯ ⋯ 0.9576 ± 0.0031
20 K ⋯ ⋯ ⋯ 0.8142 ± 0.0022 ⋯ ⋯ 0.9573 ± 0.0047
30 K ⋯ ⋯ 0.9414 ± 0.0044 0.8086 ± 0.0021 0.8964 ± 0.0000 1.0100 ± 0.0000 0.9572 ± 0.0056
40 K ⋯ ⋯ ⋯ 0.8002 ± 0.0020 ⋯ ⋯ 0.9568 ± 0.0061
50 K ⋯ ⋯ ⋯ 0.8089 ± 0.0022 ⋯ ⋯ 0.9569 ± 0.0062
60 K ⋯ ⋯ 0.9375 ± 0.0051 0.7916 ± 0.0022 0.8960 ± 0.0000 1.0099 ± 0.0020 0.9567 ± 0.0074
70 K ⋯ ⋯ ⋯ 0.7891 ± 0.0022 ⋯ ⋯ 0.9560 ± 0.0073
80 K ⋯ ⋯ ⋯ 0.7953 ± 0.0022 ⋯ ⋯ 0.9551 ± 0.0085
90 K ⋯ ⋯ ⋯ 0.7906 ± 0.0023 ⋯ ⋯ 0.9532 ± 0.0084
100 K 0.9502 ± 0.0026 0.9598 ± 0.0026 0.9266 ± 0.0071 0.8099 ± 0.0021 0.8971 ± 0.0028 1.0107 ± 0.0038 0.9556 ± 0.0084
110 K ⋯ 0.9585 ± 0.0028 ⋯ 0.8363 ± 0.0021 ⋯ ⋯ 0.9547 ± 0.0087
120 K ⋯ 0.9569 ± 0.0030 ⋯ 0.8262 ± 0.0023 ⋯ ⋯ 0.9546 ± 0.0093
125 K ⋯ 0.9561 ± 0.0030 ⋯ ⋯ ⋯ ⋯ ⋯
130 K ⋯ 0.9546 ± 0.0031 ⋯ 0.8268 ± 0.0026 ⋯ ⋯ 0.9528 ± 0.0083
135 K ⋯ 0.9550 ± 0.0032 ⋯ ⋯ ⋯ ⋯ ⋯
140 K 0.9453 ± 0.0031 ⋯ 0.9381 ± 0.0074 0.8129 ± 0.0026 0.8957 ± 0.0012 1.0101 ± 0.0069 0.9522 ± 0.0090
145 K ⋯ 0.9540 ± 0.0033 ⋯ ⋯ ⋯ ⋯ ⋯
150 K ⋯ 0.9531 ± 0.0036 ⋯ 0.8176 ± 0.0029 ⋯ ⋯ 0.9552 ± 0.0082
160 K ⋯ 0.9501 ± 0.0036 ⋯ 0.7909 ± 0.0042 ⋯ ⋯ 0.9554 ± 0.0109
170 K 0.9411 ± 0.0035 0.9501 ± 0.0037 0.9260 ± 0.0065 0.7766 ± 0.0046 0.9014 ± 0.0033 1.0079 ± 0.0058 0.9618 ± 0.0082
180 K ⋯ 0.9486 ± 0.0038 ⋯ 0.7651 ± 0.0054 ⋯ ⋯ 0.9596 ± 0.0092
190 K ⋯ 0.9463 ± 0.0041 ⋯ 0.7781 ± 0.0054 ⋯ ⋯ 0.9584 ± 0.0080
197 K ⋯ 0.9474 ± 0.0047 ⋯ ⋯ ⋯ ⋯ ⋯
200 K ⋯ 0.8817 ± 0.0066 0.7630 ± 0.0065 0.9319 ± 0.0161 0.9999 ± 0.0073 0.9551 ± 0.0159
202 K ⋯ 0.9455 ± 0.0045 ⋯ ⋯ ⋯ ⋯ ⋯
205 K ⋯ 0.9442 ± 0.0045 ⋯ ⋯ ⋯ ⋯ ⋯
210 K ⋯ ⋯ ⋯ 0.7475 ± 0.0072 ⋯ ⋯ 0.9465 ± 0.0208
215 K ⋯ 0.9485 ± 0.0061 ⋯ ⋯ ⋯ ⋯ ⋯
220 K ⋯ 0.9556 ± 0.0072 ⋯ 0.7763 ± 0.0088 ⋯ ⋯ 0.9406 ± 0.0229
222 K ⋯ 0.9523 ± 0.0069 ⋯ ⋯ ⋯ ⋯ ⋯
225 K ⋯ 0.9611 ± 0.0095 ⋯ ⋯ ⋯ ⋯ ⋯
230 K 0.9328 ± 0.0043 0.9723 ± 0.0097 0.8241 ± 0.0143 0.7467 ± 0.0095 0.9353 ± 0.0174 0.9379 ± 0.0238 0.9413 ± 0.0199
235 K ⋯ 0.9747 ± 0.0100 ⋯ ⋯ ⋯ ⋯ ⋯
240 K ⋯ 0.9818 ± 0.0106 ⋯ 0.7572 ± 0.0100 ⋯ ⋯ 0.9318 ± 0.0191
250 K ⋯ 0.9898 ± 0.0107 ⋯ 0.7437 ± 0.0098 ⋯ ⋯ 0.9268 ± 0.0215
260 K ⋯ ⋯ ⋯ 0.7595 ± 0.0110 ⋯ ⋯ 0.9181 ± 0.0182
270 K 0.9262 ± 0.0048 0.9898 ± 0.0107 0.8157 ± 0.0116 0.7505 ± 0.0104 0.9098 ± 0.0205 0.9071 ± 0.0194 0.9111 ± 0.0216
275 K ⋯ 0.9990 ± 0.0113 ⋯ ⋯ ⋯ ⋯ ⋯
280 K ⋯ 0.9991 ± 0.0109 ⋯ 0.7316 ± 0.0111 ⋯ ⋯ 0.9044 ± 0.0201
290 K ⋯ ⋯ ⋯ 0.7554 ± 0.0121 ⋯ ⋯ 0.9009 ± 0.0215
300 K ⋯ 0.9962 ± 0.0110 0.7778 ± 0.0147 0.7438 ± 0.0122 0.8867 ± 0.0205 0.8841 ± 0.0224 0.8888 ± 0.0212
310 K ⋯ ⋯ ⋯ 0.7158 ± 0.0130 ⋯ ⋯ 0.8851 ± 0.0222
320 K ⋯ ⋯ ⋯ 0.7173 ± 0.0129 ⋯ ⋯ 0.8764 ± 0.0214
330 K ⋯ ⋯ ⋯ 0.7187 ± 0.0127 ⋯ ⋯ 0.8646 ± 0.0233
340 K ⋯ ⋯ ⋯ 0.7218 ± 0.0137 ⋯ ⋯ 0.8603 ± 0.0247
350 K ⋯ ⋯ ⋯ 0.7216 ± 0.0139 ⋯ ⋯ 0.8485 ± 0.0229
370 K ⋯ ⋯ ⋯ 0.7188 ± 0.0149 ⋯ ⋯ 0.8332 ± 0.0247
400 K ⋯ ⋯ ⋯ 0.7116 ± 0.0194 ⋯ ⋯ 0.7962 ± 0.0261
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WS
A,m(ν) =WHO

S (ν) =
βh̵ν

exp (βh̵ν) − 1
− ln [1 − exp (−βh̵ν)], (17)

where β = 1/kT and h̵ is Plank’s constant,

Wg
A,m(ν) =WHS

g (ν) =
1
3

SHS

k
. (18)

Thus, it is axiomatic that the total entropy depends on the fre-
quencies and fluidicity factors (f s) associated with various motions.
Using this method, several water models have been found to yield
very accurate results for thermodynamic quantities over a wide
range of thermodynamic state points. Above all, this method con-
verges for a small MD trajectory (20 ps).

IV. RESULTS
A. Bulk water

The temperature dependence of density of the bulk phase (3D)
is plotted in the upper panel of Fig. 2. While decreasing the temper-
ature from 300 to 5 K, the density profile first increases and attains
global maximum at 280 K in good agreement with the findings of
Miguel and Abascal49 and very close to the experimental value of
277 K. After this point, the density gradually decreases until 205 K,
where it achieves a global minimum. This is followed by another
region of increasing density until 5 K. We find that between the
global maximum and minimum, the density profile changes the
slope near 230 K with an inflection point near 220 K. Taken
together, the non-monotonic temperature profile suggests structural
or dynamical crossover near 205, 230, and 280 K. The values of the
density at different temperatures have been tabulated in Table I.

Figure 3 (upper panel for 3D) shows the DOS of bulk water
in the amorphous and hexagonal ice phases at 170 and 270 K.
We further decompose the total DOS into contributions arising
from molecular center of mass diffusion (DOSdiffuse), librational,
low frequency rattling modes as in a solid (DOSlib−trans), (hindered)

FIG. 3. Density of states of bulk water (upper panel), water confined inside the
graphene slit-pore (middle panel), and water confined inside the (11,11) CNT at
170 and 270 K. For all the temperatures, the DOS has been plotted for all the
systems which was, starting from ice and the amorphous phase, studied in this
work. The DOS is shifted on the Y axis for clarity.

rotations about the center of mass (DOSrot), and internal molec-
ular vibrations (DOSi−vib). Analysis of the DOSlib−trans spectrum
(which extends up to ∼350 cm−1) reveals two peaks at ∼50 and
∼280 cm−1, which are commonly assigned to inter-molecular hydro-
gen bond (HB) bending and HB stretching motions, respectively.27,50

We find that the DOSlib−trans peak for the HB stretching motion in
the amorphous phase appears at a lower energy than that of the
hexagonal ice phase at the same temperature, suggesting a more
diverse HB environment in the amorphous phase and an over-
all shallower potential. Moreover, we find that in both cases, the
energy of the HB-stretching mode red shifts to a lower frequency
with decreasing temperature by ∼20 cm−1 over 100 K. Between 350
and 1100 cm−1, there is a broad band arising from rotational libra-
tion motion. With increasing the temperature, the line shape of this
band increases in width and starts to overlap with the translational–
librational bands, leading to highly coupled molecular motions near
270 K. Above 1500 cm−1, there are two peaks at ∼1670 and ∼3300
cm−1 emerging from intra-molecular H–O–H angle bending and –
OH stretching motions, respectively. With increasing temperature,
we find that the HOH bending mode red shifts while the –OH
stretching mode blueshifts, reflecting changes in the HB network due
to a change in the external potential brought on by structural trans-
formations. Overall, these changes in the DOS result in entropic sig-
natures of the amorphous and hexagonal ice phases, as discussed in
Sec. IV A 1.

1. Determination of Kauzmann temperature
from total entropy

The Kauzmann temperature depends on the entropy differ-
ence between ice and amorphous phases of the system, which we
computed accurately using the 2PT method over a wide range of
temperatures. The entropy of water calculated with the 2PT method
employing quantum correction has been shown to be consistent with
reported values using the quantum corrected specific heat27 for the
TIP4P-2005 water model.51 Note that for most of the liquids, quan-
tum effects on entropy become relevant only at low temperatures,
specifically below 100 K. However, for water, quantum effects are
known to be important even at room temperature due to the high
frequency intra- and inter-molecular vibrations and the complex HB
network, as discussed in Sec. IV A. For bulk water, we find that the
total entropy of the bulk liquid (or the amorphous solid) is always
greater than that of the hexagonal ice phase (left panel of Fig. 4
and Table II). Furthermore, by decomposing the total entropy into
components arising from the various molecular vibrational motions,
we show that the translational entropy is always higher than the
rotational and vibrational components over the entire temperature
range investigated. This is expected as the translational modes have
the lowest frequency. Thus, the distinguishing entropic signature
of amorphous ice is its relatively large translational entropy above
200 K, compared to hexagonal ice (left panel of Fig. 5). The entropic
difference between these two phases decreases rapidly between 270
and 200 K (left panel of Fig. 6) due to large scale density fluctuations,
whereas below 200 K, more muted fluctuations result in smaller
entropic differences. In Fig. 6 (left panel), we plot the entropy differ-
ence [ΔS, defined in Eq. (1)] between the amorphous and ice phases
of the system. A linear fit of the entropy difference, ΔS, above 205 K
and between 150 and 205 K, crosses zero at 199 K and 133 ± 50 K,
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FIG. 4. Entropy of the bulk water (left panel) in the hexagonal ice phase (black) and
amorphous phase (red); entropy of water in the square-ice (black) and 2D amor-
phous (red) phase as a function of temperature inside the graphene slit nanopore
(middle panel); and entropy of water in nonagon ice with a central chain (black)
and amorphous (red) as a function of temperature inside the (11,11) CNT (right
panel). In all the cases, the entropy in the amorphous phase is higher than that of
ice, including the error bars (numbers are provided in Table II) over a wide temper-
ature range. Insets are the zoomed image of the plots to demonstrate the entropy
difference at low temperature in each panel.

respectively (left panel of Fig. 6), which thus defines the Kauzmann
temperature of bulk water to be 133 K. This calculated TK is close
to the experimental value of the glass transition temperature,12,52

Tg = 136 K, for the low density liquid, and agrees well with the simu-
lation study by Saito and Bagchi, where they reported TK = 135 K.27

Note that the value of Tg for the high density liquid is 116 K.52 Other
experiments have reported a Tg of 124 K without annealing53 and
113–148 K for hyperquenched water.17

2. Determination of Kauzmann temperature
from fluidicity factors

We now propose another way to determine the Kauzmann tem-
perature using the fluidicity factor introduced in Sec. III. We plot the
fluidicity factor for translational and rotational components in vari-
ous phases (in the left panel of Fig. 7). The rotational component of
entropy does not contribute significantly to the total entropy differ-
ence at a low temperature range. Hence, similar to the total entropy
as discussed in Sec. IV A 1, we also plot the difference between the
fluidicity factor of the ice phase and amorphous phase for the trans-
lational (Δf trans) degree of freedom (in the left panel of Fig. 8). Linear
fits of the difference in the translational fluidicity factors, Δf trans,
above 205 K and between 150 and 205 K, cross zero at 213 K and
150 ± 67 K, respectively. The difference in the fluidicity factor (Δf )
overpredicts, compared to the values obtained using total entropy,
the fragile-to-strong transition temperature19 as well as the Kauz-
mann temperature, TK . The frequency shift between two states
of matter (water) is featured in over-prediction of the dynamical
transition temperatures computed by this method.

As demonstrated in Fig. 3, there is a red shift of the rotational–
librational band of amorphous ice, indicating a weakening of the
covalent bond, strengthening of the HB,54 and reduced rotational

motions. The weakening or strengthening of the HB network is cou-
pled to structural changes with temperature. We find that while the
position of the first, second, and fourth peaks of the radial distribu-
tion function (upper panel of Fig. 10) shifts toward shorter distance,
and concomitantly increases in intensity, with decreasing temper-
ature, the position of the third peak remains relatively unchanged.
Here, we interpret these shifts to the increase in the tetrahedral
order55 with decreasing temperature. Moreover, the increase in the
first peak intensity with decreasing temperature indicates a more
structured first solvation shell, while the area under the second peak
is related to the order parameter of liquid–liquid phase transitions56

between the high density liquid (HDL) and low density liquid (LDL).
In the HDL, the second solvation shell is poorly defined due to
the presence of interstitial molecules between the first and second
coordination shells. On the other hand, the LDL is characterized by
well-separated first and second peaks and more ice-like local order
in the supercooled liquid.

B. Water under 2D confinement
The density of water molecules confined inside a graphene

nano-slit (GNS) is reported in the middle panel of Fig. 2. Upon heat-
ing (black line), we find that the density of the 2D square-ice system
is constant up to 170 K, followed by a gradual decrease up to 230 K
and a convergence to the amorphous density at 300 K. Moreover,
we find that the density of the 2D amorphous system increases with
decreasing temperature until 110 K, followed by a jump around
100 K, then remains constant until 10 K (red line).

The middle panel of Fig. 3 shows the corresponding DOS func-
tions at 170 and 270 K. Unlike the bulk case, we find a single sharp
peak at ∼100 cm−1 in the DOSlib−trans spectrum with a shoulder at
∼260 cm−1 arising from inter-molecular hydrogen bond (HB) bend-
ing and HB stretching motion, respectively. The HB bending feature
is blueshifted compare to its bulk counterpart (∼50 cm−1). Most
importantly, and in sharp contrast to the bulk, we find that the peak
energy and intensity are relatively unaffected by changes in the tem-
perature. Indeed, it is noteworthy that there is a 5 cm−1 shift between
the peaks of ice and amorphous phases around 100 cm−1, which lies
in the region of translational motion.

1. Determination of Kauzmann temperature
from total entropy

Considering the thermodynamic properties of the 2D confined
liquid, we find that the total entropy in the amorphous phase is
slightly greater than that in the 2D square-ice phase. Decomposi-
tion of the total entropy into the independent molecular motions
shows that the translational and rotational entropies in the liquid
are substantially larger, whereas the internal vibrational component
of entropy is similar to that of 2D ice between 0 and 170 K (middle
panel of Fig. 5). A close look into Fig. 4 revealed that the total entropy
of the confined liquid is always greater than that of 2D ice across the
entire temperature range. The entropic difference between these two
phases decreases slowly with decreasing temperature (middle panel
of Fig. 6). A linear fit of the entropy difference, ΔS, below 170 K,
crosses the Y axis at 0.2377, which is a measure of excess entropy,
defined by Kauzmann, at 0 K (middle panel of Fig. 6). This number
suggests that the amorphous phase has greater entropy, though very
small amount, than that of ice in 2D confinement even at 0 K; thus,
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TABLE II. Entropy (in J/mol/K) of bulk and confined water for all the systems studied in this work.

Temperature 3D 3D 2D 2D 1D 1D 1D
(K) (ice) (amorphous) (ice) (amorphous) (9 chain ice) (9+1 chain ice) (amorphous)

5 K 0.0074 ± 0.0003 0.011 ± 0.001 0.0080 ± 0.0009 ⋯ 0.046 ± 0.008 0.026 ± 0.006 ⋯
10 K ⋯ ⋯ ⋯ 0.0870 ± 0.006 ⋯ ⋯ 0.21 ± 0.04
20 K ⋯ ⋯ ⋯ 0.62 ± 0.04 ⋯ ⋯ 0.90 ± 0.11
30 K ⋯ ⋯ 1.41 ± 0.01 1.78 ± 0.07 2.05 ± 0.10 1.99 ± 0.06 2.28 ± 0.16
40 K ⋯ ⋯ ⋯ 3.20 ± 0.10 ⋯ ⋯ 3.91 ± 0.12
50 K ⋯ ⋯ ⋯ 4.98 ± 0.06 ⋯ ⋯ 5.91 ± 0.06
60 K ⋯ ⋯ 6.12 ± 0.10 6.88 ± 0.09 7.22 ± 0.18 6.91 ± 0.09 7.75 ± 0.36
70 K ⋯ ⋯ ⋯ 8.69 ± 0.07 ⋯ ⋯ 9.36 ± 0.23
80 K ⋯ ⋯ ⋯ 11.11 ± 0.25 ⋯ ⋯ 11.23 ± 0.38
90 K ⋯ ⋯ ⋯ 13.03 ± 0.22 ⋯ ⋯ 13.63 ± 0.31
100 K 14.12 ± 0.39 14.36 ± 0.08 13.61 ± 0.11 15.21 ± 0.15 14.9 ± 0.33 14.29 ± 0.16 15.11 ± 0.16
110 K ⋯ 15.81 ± 0.18 ⋯ 16.82 ± 0.24 ⋯ ⋯ 16.69 ± 0.48
120 K ⋯ 17.44 ± 0.15 ⋯ 18.92 ± 0.12 ⋯ ⋯ 18.60 ± 0.27
125 K ⋯ 18.39 ± 0.16 ⋯ ⋯ ⋯ ⋯ ⋯
130 K ⋯ 19.32 ± 0.22 ⋯ 20.83 ± 0.26 ⋯ ⋯ 20.04 ± 0.10
135 K ⋯ 20.25 ± 0.11 ⋯ ⋯ ⋯ ⋯ ⋯
140 K 19.89 ± 0.35 ⋯ 21.71 ± 0.12 23.00 ± 0.36 22.33 ± 0.29 20.63 ± 0.24 21.87 ± 0.75
145 K ⋯ 21.50 ± 0.42 ⋯ ⋯ ⋯ ⋯ ⋯
150 K ⋯ 22.09 ± 0.14 ⋯ 25.24 ± 0.11 ⋯ ⋯ 24.29 ± 0.46
160 K ⋯ 24.02 ± 0.20 ⋯ 27.26 ± 0.32 ⋯ ⋯ 25.40 ± 0.21
170 K 24.70 ± 0.22 25.38 ± 0.23 27.90 ± 0.22 29.79 ± 0.61 27.23 ± 0.20 26.38 ± 0.19 27.19 ± 0.21
180 K ⋯ 27.04 ± 0.19 ⋯ 31.94 ± 0.30 ⋯ ⋯ 29.44 ± 0.36
190 K ⋯ 28.52 ± 0.15 ⋯ 34.64 ± 0.38 ⋯ ⋯ 30.73 ± 0.38
197 K ⋯ 29.61 ± 0.41 ⋯ ⋯ ⋯ ⋯ ⋯
200 K ⋯ ⋯ 34.62 ± 0.21 36.85 ± 0.21 34.41 ± 0.24 32.51 ± 0.52 33.56 ± 0.25
202 K ⋯ 30.89 ± 0.23 ⋯ ⋯ ⋯ ⋯ ⋯
205 K ⋯ 31.18 ± 0.11 ⋯ ⋯ ⋯ ⋯ ⋯
210 K ⋯ ⋯ ⋯ 38.72 ± 0.39 ⋯ ⋯ 36.04 ± 0.72
215 K ⋯ 33.73 ± 0.17 ⋯ ⋯ ⋯ ⋯ ⋯
220 K ⋯ 35.16 ± 0.31 ⋯ 42.49 ± 0.51 ⋯ ⋯ 39.64 ± 0.84
222 K ⋯ 35.80 ± 0.30 ⋯ ⋯ ⋯ ⋯ ⋯
225 K ⋯ 37.15 ± 0.32 ⋯ ⋯ ⋯ ⋯ ⋯
230 K 33.39 ± 0.19 38.86 ± 0.38 ⋯ 45.21 ± 0.55 ⋯ ⋯ 44.47 ± 0.98
235 K ⋯ 39.89 ± 0.30 ⋯ ⋯ ⋯ ⋯ ⋯
240 K ⋯ 40.84 ± 0.37 ⋯ 47.00 ± 0.48 ⋯ ⋯ 45.23 ± 0.82
250 K ⋯ 44.85 ± 0.42 ⋯ 51.75 ± 0.57 ⋯ ⋯ 47.68 ± 0.60
260 K ⋯ ⋯ ⋯ 53.64 ± 0.60 ⋯ ⋯ 50.44 ± 0.75
270 K 39.39 ± 0.38 50.97 ± 0.39 ⋯ 55.91 ± 0.47 ⋯ ⋯ 54.12 ± 0.87
275 K ⋯ 52.59 ± 0.23 ⋯ ⋯ ⋯ ⋯ ⋯
280 K ⋯ 54.30 ± 0.25 ⋯ 58.51 ± 0.44 ⋯ ⋯ 55.86 ± 0.78
290 K ⋯ ⋯ ⋯ 60.57 ± 1.06 ⋯ ⋯ 58.92 ± 0.99
300 K ⋯ 60.02 ± 0.17 ⋯ 63.24 ± 0.51 ⋯ ⋯ 61.22 ± 0.90

we defined the Kauzmann temperature for 2D confined water at
0 ± 20 K.
2. Determination of Kauzmann temperature
from fluidicity factor

As discussed for the 3D case, another way to compute TK is
the fluidicity factors computed by the 2PT method (middle panel

of Fig. 7). A linear fit of the difference in the translational fluidicity
factor, Δf, below 170 K, becomes zero at 21 ± 22 K (middle panel of
Fig. 8). The difference in the fluidicity factor over predicts, compared
to the total entropy method, the Kauzmann temperature from the
translational component. Note that the total entropy, S, is computed
from the linear combination of fluidicity factors (f s) with different
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FIG. 5. The decomposition of entropy
into rotational and vibrational compo-
nents (upper panels) and translational
component (lower panels) as a func-
tion of temperature for various phases
of water in different dimensions. The
black dashed or full line represents the
components in the ice phase, whereas
the red dashed or full line represents
the same component in the amorphous
phase, respectively.

weight functions, which depends on the frequency of oscillation,
mass, and moment-of-inertia of the molecule.

The oxygen–oxygen 2D pair correlation function for the
square-ice and amorphous structures under 2D nanoconfinement is
demonstrated in Fig. 10. We find that for square ice up to 170 K, the
2D RDF is indicative of a well ordered structure, which disappears
after melting, between 170 and 230 K. In contrast, the 2D RDF of

FIG. 6. The entropy difference between the amorphous and the ice phase (black
dots denote the data points). Left panel for bulk water: Red and orange lines are
the fitting of data above 205 K and between 150 and 205 K, respectively. These
lines cross zero at 199 K and 133 K, respectively. The latter one is defined as the
Kauzmann temperature, which is very close to the glass transition temperature.
Middle panel for water confined inside a graphene slit pore: The orange line is the
fitting of the excess entropy data below 170 K. Right panel for water inside the
(11,11) CNT: The orange line is the fitting of the excess entropy data below 170 K.

the amorphous structure, which always has a lower density than the
square ice, is indicative of a random structure down to 10 K.

C. Water under 1D confinement
Turning now to water molecules confined inside a (11,11) car-

bon nanotube (CNT) of diameter 14.9 Å, we find that the density of
the amorphous phase (red line in the lower panel of Fig. 2) increases
with decreasing temperature and converges to the bulk density in
the amorphous phase. The density of nonagon ice with a central
chain (black line) is always greater than that of amorphous water
(red line), which is greater than nonagon ice until 230 K. Above
230 K, all lines merge into one, which reveals that there exists only
one phase. Note that free energy, enthalpy, and entropy calculations
(Fig. 9) of these ice structures indicate that nonagon ice with a cen-
tral chain is more stable than nonagon ice in the (11,11) CNT at low
temperatures. The difference in the free energy between the two ice
phases is ∼10 meV/H2O, which is equivalent to 120 K. Interestingly,
we observed that the Helmholtz free energy in the amorphous phase
is lower than both ice phases. The free energy difference between
two phases (amorphous and ice) is significant at low temperatures,
emerging from the difference in the internal energy. In the amor-
phous phase, the number of water molecules near the axis of the
CNT is higher in percentage compared to ice phases, which provides
the stability to the amorphous phase against ice inside the (11,11)
CNT.

The lower panel of Fig. 3 shows the DOS of water in the amor-
phous and nanotube-ice phases confined inside the (11,11) CNT. In
both cases, at a fixed temperature, the DOS of water in the nanotube-
ice phases is similar to that of the amorphous phase. As the temper-
ature increases, we find that the translational, rotational–librational,
and bending mode red shift, while the –OH stretching modes blue
shift, similar to the bulk.57 We find a peak in the translational bands
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FIG. 7. Fluidicity factors for bulk (left
panel), water confined inside the graph-
ene slit pore (middle panel), and water
confined inside the (11,11) CNT (right
panel). Black dots and red squares
denote the fluidicity factors for rotational
motion (upper panels) and translational
motion (lower panels) in ice and amor-
phous phases, respectively.

near ∼70 cm−1 with a shoulder at ∼225 cm−1 arising from HB bend-
ing and stretching motions, respectively. Yet unlike the case of 2D
confinement, and similar to the bulk, the bandgap between the trans-
lational and rotational–librational modes decreases with increasing
temperature for both the ice and amorphous structures. We note
that the two stretching modes, arising from the symmetric and asym-
metric vibrations of the OH bond, are poorly resolved in bulk but
are more distinct under 1D confinement. Additionally, we find the

FIG. 8. The difference in the translational fluidicity factor between amorphous and
ice phases. The orange line is the linear fit of the data points (left panel) bulk water,
(middle panel) water confined in the graphene slit pore (right panel) and water
confined in the (11,11) CNT. The inset of the left panel demonstrates the difference
in the translational fluidicity factor for the full range of temperature where both 3D
phases co-exists.

signature of a high energy peak near 3700 cm−1, indicative of
broken HBs.58

1. Determination of Kauzmann temperature
from total entropy

Consistent with the thermodynamics under 2D
nano-confinement, we find that water confined inside the (11,11)
CNT has total entropies, in general, greater than that of the ice
phases over a temperature range below 170 K. Decomposition of the
total into the independent molecular motions further reveals that the
difference in the total entropy is arising from the translational com-
ponent (right panel of Fig. 5). Moreover, the computed difference
in entropy between amorphous and ice phases decreases slowly with
temperature (right panel of Fig. 6). A linear fit of the entropy differ-
ence, ΔS, below 170 K, meets the Y axis at 0.2439 (J/mol)/K (right
panel of Fig. 6), which is the difference in the entropy at 0 K. Sim-
ilar to 2D confinement, this difference reveals that the amorphous
phase has higher entropy than the ice phase even at 0 K. Hence we
can define the Kauzmann temperature for 1D confined water to be 0
± 32 K.

2. Determination of Kauzmann temperature
from fluidicity factor

As discussed for two other dimensions, we computed TK from
the fluidicity factors as well (right panel of Fig. 7). The linear fit of
the difference in the translational fluidicity factors, Δf, below 170 K,
crosses the Y axis at 0.002 (right panel of Fig. 8). The difference in the
translational fluidicity factor is also non-zero at 0 K, which suggests
that the Kauzmann temperature is 0 ± 30 K (orange line in the right
panel of Fig. 8).

Further insights into the underlying structural basis for the
computed thermodynamics were obtained from the oxygen–oxygen
cylindrical distribution function,59 which is defined as
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FIG. 9. (a) Entropy, (b) enthalpy, and (c) free energy for nonagon ice (9 chain)
and nonagon ice with a central chain (9+1 chain) confined inside the (11,11) CNT
reveals that the latter one is more stable than the former. However, the free energy
calculation reveals that the amorphous phase is the most stable phase in the
(11,11) CNT below 150 K.

CDF = ρ(rxy)
ρ

, (19)

where ρ(rxy) is the areal density in the XY plane and ρ is the total
density of water confined inside a CNT. We also calculated

go−o(z) =
1

N(L − z)
N

∑
i=1

N

∑
j=1,j≠i

δ(z − zij), (20)

FIG. 10. Radial distribution function (RDF) for bulk phases (upper panel) and 2D
confined phases (lower panel). Red to black and vice versa denote the change in
temperature while cooling and heating protocols.

where go−o(z) is the oxygen–oxygen pair correlation function of
confined water inside a L = 40 Å long CNT, N is the total number
of molecules confined inside a CNT, and zij is the difference in the
z-coordinate of the ith and jth molecules.

We find that for the nonagon ice structure inside the (11,11)
CNT (upper panel of Fig. 11), the CDF reveals a single peak at
∼4 Å up to 100 K with a weak axial peak 0.5 Å emerging above
100 K. Due to the near constant density in these systems, this result
indicates a splitting of the distribution of the H2O molecules above
100 K, with increased molecular density near the central axis of the
CNT. We also find that as the temperature increases, the ∼4 Å main
peak becomes smaller and shifts toward the central axis due to the
interactions with the axial peak. Indeed, the final resulting structure
mimics that of the nonagon ice motif with a central chain (middle

FIG. 11. Cylindrical distribution function (CDF) [defined in Eq. (19)] for nonagon ice
(upper panel), nonagon ice with a central chain (middle panel), and the amorphous
phase (lower panel) of confined water inside the (11,11) CNT. The two-point corre-
lation function [defined in Eq. (20)] plotted in the z direction, which is the direction
of the CNT axis, reveals that water does not crystallize down to 100 K.

J. Chem. Phys. 154, 164510 (2021); doi: 10.1063/5.0047656 154, 164510-11

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

panel), albeit with lower intensity due to the reduced density. In
the case of amorphous water inside the (11,11) CNT (lower panel
of Fig. 11), we note that the CDF has two peaks at ∼1 to 4 Å, and
both peaks are not very well-separated, which suggests that the water
molecule can move continuously laterally from the axis to the inter-
nal wall of the CNT. However, the peaks are separated at 100 K,
which suggests that the water molecule cannot move from the axis
to the internal wall due to the low kinetic energy to cross the free
energy barrier along the radial direction. The pair correlation func-
tion, go−o(z), in the z direction (along the CNT axis) reveals that
the nonagon ice (upper panel of Fig. 11) and nonagon ice (middle
panel of Fig. 11) with the central chain melts between 170 and 230
K. However, the amorphous phase (lower panel of Fig. 11) does not
show any ordering until down to 100 K.

In summary, in the case of 1D and 2D water under nanoscale
confinement, our calculations reveal that the entropy of the amor-
phous phase is greater than that of the corresponding ice struc-
tures. The entropy differences decrease slowly with temperature and
cut the temperature axis around 0 K, which means that unlike the
bulk system, the Kauzmann temperature of confined water, which
signifies the glass transition temperature of confined water, lies at
0 K. This is consistent with the results of Berthier et al. who showed
that there is a zero temperature glass transition for less than three
dimensions.60

V. CONCLUSION
In this study, we explored the existence of a Kauzmann temper-

ature for bulk water and water under nano-confinement of varying
dimensionality. Specifically, we computed the entropy of 1D, 2D,
and 3D phases and water in liquid and ice phases using the 2PT
method. We showed that the results of our 3D calculations, employ-
ing the flexible TIP4P-2005 model, are in good agreement with those
of the rigid TIP4P-2005 calculations of Saito et al., for bulk ice-Ih
and liquid, over the entire temperature range. More importantly, our
calculated entropies clearly demonstrate that the Kauzmann temper-
ature is present at 133 K, which is very close to the experimentally
obtained glass transition temperature. However, for water under 2D
and 1D nanoconfinement,60,61 we found that the Kauzmann temper-
ature is zero, implying that that there is no finite temperature glass
transition for less than three dimensions.60

It is worth mentioning here that inferring low temperature
properties of water and, in general, about glass forming liquids
through computer simulations is challenging. Indeed, such liquids
cannot be equilibrated at low temperatures in simulations carried
out for time scales of the order of 1 μs. Using the relaxation time
reported by Saito et al.,22 we estimate that the lowest temperature
at which we could equilibrate our bulk water system is about 150 K
within 500 ns long simulation. This, however, does not prevent us
from estimating the Kauzmann temperature. The standard proce-
dure5–7 used for estimating the Kauzmann temperature from sim-
ulations is to calculate the excess entropy ΔS at temperatures for
which the liquid can be equilibrated over the time scale of the simu-
lation and then extrapolate the results to lower temperatures to find
the temperature at which the extrapolated value goes to zero.

There is another important point that we wish to highlight.
Saito et al. used the TIP4P-2005 model to study equilibrium
and dynamical properties of water at 1 atm pressure from MD

simulations carried out for very long times (more than 50 μs at low
temperatures).22 They also used thermodynamic integration to cal-
culate ΔS.27 They reported the occurrence of a dynamical crossover
at 220 K (interpreted as a fragile-strong crossover) and a Kauz-
mann temperature of 135 K.27 These results are very similar to those
reported here. In addition, the left panel of Fig. 6 shows that our
results for ΔS at lower temperatures for which the system does not
equilibrate during our 500 ns runs fall on the straight line fit of
the data at higher temperatures. These observations suggest that the
values of ΔS obtained from the velocity autocorrelation function
(VACF) are fairly accurate even if the time at which the VACF is
calculated is not long enough to attain equilibrium at the prevail-
ing temperature. To check whether this is true, we calculated the
VACF at 202 K, starting at three different times (10, 100, and 250
ns), after the time at which the temperature was set at this value. The
relaxation time at this temperature is estimated to be ∼50 ns. Hence,
the system had not reached equilibrium in the calculation starting at
10 ns, and it must have reached equilibrium in the calculation that
started at 250 ns. As shown in Fig. S1, the VACF calculated for these
two starting times is essentially identical. Similar results were found
for other temperatures. As shown in Table S1, the entropy values at
202 K obtained from the VACF using the 2PT method are essentially
the same for the three values of the starting time. These results sug-
gest that the value of the entropy obtained from the 2PT method is
reliable even if the time at which the VACF is measured is not long
enough for reaching full equilibration.

We also found that the difference in the fluidicity factors, a
measure of anharmonicity in the 2PT method, is the main source of
the difference in the entropy between two phases in any dimensions.
However, further analysis of the translational fluidicity factor differ-
ence reveals that the Kauzmann temperature can also be calculated
from the difference in the translational component of the fluidicity
factor. It is worth noting that the fluidicity factor gives an accurate
Kauzmann temperature when a frequency shift does not take place
across the different phases of the material at the same temperature,
and the major contribution in the excess entropy comes from the
difference in the fluidicity factor.

SUPPLEMENTARY MATERIAL

See the supplementary material for the velocity auto-
correlation and entropy values at different time intervals from a 250
ns long run at 202 K to show the equilibration and convergence of
results.
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