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The reduction of sulfur during discharge in a lithium-sulfur (Li-S) cell is known to occur in a series of reaction steps that involve
lithium polysulfide intermediates. We present an operando study of the discharge of a solid-state Li-S cell using X-ray absorption
spectroscopy (XAS). In theory, the average chain length of the polysulfides, xavg,cell, at a given depth of discharge is determined by
the number of electrons delivered to the sulfur cathode. The dependence of xavg,cell measured by XAS on the depth of discharge is
in excellent agreement with theoretical predictions. XAS is also used to track the formation of Li2S, the final discharge product,
as a function of depth of discharge. The XAS measurements were used to estimate rate constants of a series of simple reactions
commonly accepted in literature.
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Lithium-sulfur (Li-S) batteries have been considered as attractive
alternative to current Li-ion batteries due to their large theoretical
capacity (1672 mAh/g) and theoretical energy density (2600 Wh/kg).
Sulfur is a particularly attractive cathode material for large format cells
because it is cheap and abundant.1–4 While there are numerous practi-
cal problems that have prevented the commercialization of recharge-
able Li-S batteries, a significant barrier is the lack of understanding of
the reaction mechanism that underlies this chemistry.5–10 The redox
reactions in the sulfur cathode occur in steps.11 Some of the products
in these steps are soluble lithium polysulfides intermediates.12–14 The
chemical formulae of lithium polysulfides are generally expressed as
Li2Sx where x, the length of the sulfur chain in the polysulfide is
generally assumed to be between 2 and 8.15 The dissolution of these
species into the electrolyte is one of the primary problems that must
be overcome before rechargeable Li-S batteries are commercialized.
It also interferes with fundamental studies of redox reactions in the
sulfur cathode.

The discharge reaction in the sulfur cathode of a Li-S cell can be
written as Equation 1.

S8 + ne Li+ + ne e− k→ ne

2
Li2Sxavg [1]

We define ne as the moles of electrons delivered to the sulfur
cathode per mole of S8 in the cathode. The discharge reaction is
complete when ne = 16 and the only product in the cathode is Li2S. Our
interest is to determine the state of the cathode during the intermediate
steps of the discharge process. It is well known that numerous partially
reduced sulfur species exist in the cathode during these intermediate
steps. Despite these complexities, Equation 1 must hold. In other
words, the distribution of polysulfides obtained at a particular value
of ne must be such that the average chain length of the polysulfides,
xavg, is given by Equation 2, which arises due to mole balance of sulfur
in Equation 1.

xavg = 16

ne
[2]
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To our knowledge, the validity of Equation 2 has not been experi-
mentally established.

Many reactions have been proposed11 for the stepwise reduction
of sulfur. We begin our discussion with a simple series of steps given
below:

S8 + 2 Li+ + 2 e− k0→ Li2S8, [3]

Li2S8 + 2 Li+ + 2 e− k1→ 2 Li2S4, [4]

Li2S4 + 2 Li+ + 2 e− k2→ 2 Li2S2, [5]

Li2S2 + 2 Li+ + 2 e− k3→ 2 Li2S. [6]

In the simplest case, the overall sulfur reduction reaction rate is
governed by the discharge rate imposed on the Li-S cell. This will
be true if effects such as transport limitations in the electrolyte and
blocking of electrode surfaces due to insulating products are negligi-
ble. The discharge rate is typically expressed as C/τ where τ is the
number of hours required to fully discharge the cathode. The overall
rate of the discharge reaction is controlled by dne/dt, which is held
constant during a galvanostatic discharge. If we start with a sulfur
cathode containing m grams of sulfur (0.171 mg), and discharge it
with a current, i in mA (0.0143 mA), then ne at a given time, t in
hours, is given by Equation 7.

ne = 16i t

1672m
[7]

where we have used the fact that the theoretical capacity of the sulfur
cathode is 1672 mAh per g of sulfur.

The electrons delivered by the potentiostat to the cathode partic-
ipate in all of the Reactions 3–6. The distribution of polysulfides in
the cathode at time t will be determined by the relative rate constants,
k0/k1, k2/k1, and k3/k1; see Reactions 3-–6 for definitions of ki. Our use
of k1 to normalize rate constants will be made clear shortly. Our objec-
tive is to estimate some of the relative rate constants that characterize
reactions in a model sulfur cathode.
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In the past decade, different techniques have been used to study
the reaction mechanism in Li-S cells. Each technique has its own
advantages and limitations.9,11 Electrochemical measurements such
as cyclic voltammetry (CV)16,17 and rotating-ring disk electrode
(RRDE)18 are powerful approaches for determining the state of dis-
charge but lack of the ability to distinguish different reaction products.
X-ray diffraction (XRD) can be used to detect the presence of crys-
talline species such as Li2S and S8 but it is insensitive to the presence
of amorphous polysulfides.19,20 Uv-vis,21–23 Raman,24,25 NMR26,27 and
X-ray absorption spectroscopy (XAS)28–39 can, in principal be used
to detect polysulfides. In References 20–38, measured spectra are
used to infer the presence of certain specific polysulfide species. Such
inferences rely on spectral signatures of pure polysulfides. Unfortu-
nately there is no consensus on how polysulfides might be purified
nor is there consensus on unique spectral fingerprints of different
polysulfides.

In this paper, we present results of an operando XAS study of
a solid-state Li-S cell. Our measurements enable independent mea-
surements of xavg and ne, thereby enabling a test of the validity of
Equation 2. The XAS data also enable determination of the moles of
Li2S formed during discharge. These measurements enable determi-
nation of relative rate constants that characterize sulfur oxidation in
the cathode, k2/k1 and k3/k1.

Experimental

The separator/electrolyte and cathode were stored inside an argon-
filled glove box (MBraun) with H2O and O2 concentrations maintained
at less than 0.1 ppm. Cell assembly was performed inside the same
glove box.

Separator/electrolyte film preparation.—The separator/
electrolyte films were prepared using a block copolymer of
polystyrene-b-poly(ethylene oxide) (SEO) synthesized using meth-
ods described in the work by Hadjichristidis et al.40 and purified
using methods described in the work by Teran et al.41 The molecular
weights of polystyrene and poly(ethylene oxide) are 200 kg/mol
and 222 kg/mol, respectively. Lithium perchlorate (LiClO4, Sigma-
Aldrich) was dried for 24 hours under vacuum at 90◦C before
use. The separator/electrolyte films containing SEO and LiClO4

were prepared according to the method described in the work by
Wujcik et al.42 The thickness of separator/electrolyte film used was
22 μm.

Cathode preparation.—Cathode slurries containing S8 (Alfa Ae-
sar), Li2S (Sigma-Aldrich) carbon black (Denka), LiClO4, and SEO
(identical LiClO4/SEO composition to that of the electrolyte sep-
arator) was mixed in n-methylpyrrolidone (NMP). The slurry was
composed of 89 wt% of NMP. S8 and Li2S were mixed in a 256:46
weight ratio to produce Li2Sx with an average x value of 8 as the
starting material. Due to the insulating properties, both ionic and elec-
tronic, of S8, Li2S8 was used as the starting material. Since Li2S8 is
soluble in the slurry, we expect a uniform distribution of the sulfur-
containing species in the cathode (as opposed to insoluble S8), and
we posit that this leads to better contact between the active material,
the electrolyte and carbon black in the dry cathode. The slurry was
mixed overnight at 90◦C and subsequently mixed using a homoge-
nizer (Polytron) set to 15,000 RPM. Homogenization was done for
five minutes and repeated three times, with two minute rests between
each cycle to prevent the solution from heating up to undesirable
temperatures. The resulting slurry was then casted onto an 18 μm
thick aluminum foil current collector using a doctor blade. The film
was dried under Argon at 60◦C for 10 hours and then placed under
static vacuum overnight at room temperature. The resulting cathode
had an average thickness of 16 μm, with the resulting composition:
12.8 wt% Li2S8, 51.4 wt% SEO, 5.5 wt% LiClO4, and 30.3 wt% car-
bon. Our use of a relatively thin sulfur cathode with low sulfur loading

Figure 1. Schematic of a Li-S cell used for operando XAS study.

was motivated by our desire to minimize self-absorption in the XAS
experiments.

Cell assembly and cycling.—A pouch cell was prepared according
to the method described in the work by Wujcik et al.37 The electrolyte
film was placed on the cathode. The lithium metal anode was then
placed over the electrolyte film. The cathode-electrolyte-anode stack
was tabbed and sealed in a pouch cell was kept at rest at room tem-
perature in an argon environment for 48 hours before taking measure-
ments. The cell was then taken out of the argon-filled glove box and
placed on a sample holder connected to a heating source. It was then
held at a temperature of 90◦C for 1.5 hours to ensure good electrical
contact between the cathode, electrolyte, and anode layers. The cell
was then charged to partially form S8, and then discharged at 90◦C
at a C/20 rate using a VMP3 Potentiostat (Bio-Logic). High tempera-
ture operation is necessary due to the limited conductivity of polymer
electrolytes at low temperatures.43 Figure 1 shows a schematic of the
assembled cell. The discharge and charge rate was calculated using
the measured mass of the cathode electrode, the known weight per-
cent of sulfur in the cathode, and assuming a theoretical capacity of
1672 mA-h/g for sulfur. The voltage window was kept between 1.5 V
and 3.0 V.

X-ray absorption spectroscopy.—XAS measurements were per-
formed at beamline 4–3 of the Stanford Synchrotron Radiation Light-
source. Preliminary XAS experiments were performed at beam-
line 5.3.1 of the Advanced Light Source. Measurements were
taken in fluorescence mode using a four element Vortex detec-
tor, with 0.1 eV energy resolution around the absorption K-edge.
One scan took roughly 10 minutes to collect, equivalent to roughly
13.9 mA-h/g of capacity passed per scan. The beam spot size
was 2 mm2 and was not moved during cycling. The cell holder
was inside a helium-filled chamber during the in operando mea-
surements. Calibration of the X-ray energy was performed using
sodium thiosulfate (Sigma-Aldrich), setting the first peak maximum
to 2472.02 eV.

XAS spectra analysis.—All spectra were analyzed using the
Athena X-ray absorption spectroscopy program. Raw XAS spectra
were used to calculate the “total sulfur” intensity based on methods
described by our previous work.42 For peak deconvolution and prod-
uct analysis, all spectra were normalized and self-absorption corrected
using the Athena XAS analysis package. The initial spectra were fit-
ted with 4 Gaussian peaks and a step function. After 50 mAh/g the
spectra were fitted with 6 Gaussians to account for the increasing
skewness in the main-edge peak due to blueshift of the main-edge
peak for mid-chain and short-chain polysulfides. Example of fitting
an experimental spectra with 6 Gaussian peaks and a step function is
shown in Figure S1.
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Figure 2. (a) Theoretical XAS spectra from Pascal et al.,44 (b) linear relationship between x for Li2Sx (3 ≤ x ≤ 8) and the area ratio of main-edge peak to pre-edge
peak, Am/Ap, and (c) sum of pre-edge and main-edge peak areas per mole of Li2Sx (4 ≤ x ≤ 8) from theoretical spectra.

Results and Discussion

Theoretical XAS spectra analysis.—Theoretical XAS spectra for
different lithium polysulfides were presented by Pascal et al. in a
previous publication,44 and the results are summarized in Figure 2a.
In the inset of Figure 2a, we show a typical molecular conformation of
one of the polysulfides, Li2S8. Polysulfides with chain length between
3 and 8 have two charged terminal sulfurs and the remainder of the
internal sulfurs are uncharged. The two kinds of sulfurs give rise to
two distinctive XAS features: a pre-edge peak corresponding to the
two charged end-chain sulfurs and a main-edge peak corresponding
to the internal sulfurs. The area under the theoretical pre-edge peak
of each polysulfide is denoted by ATh

p . Similarly the area under the
theoretical main-edge peak of each polysulfide is denoted by ATh

m .
The spectral features of the polysulfides are approximated as a sum
of Gaussian peaks and the areas under selected peaks were used to
compute ATh

p and ATh
m as outlined in Figure S2. In Figure 2b we plot

the ratio, ATh
m /ATh

p , as a function of polysulfide chain length, x in Li2Sx

(3 ≤ x ≤ 8). The line in Figure 2b is a least squares linear fit. We use
this linear fit as a “calibration” to determine the average chain length
of polysulfides in our cell, xavg, using measured values of pre-edge
and main-edge areas, Ap and Am. The straight line in Figure 2b can be
represented as

x = 0.8732Am/Ap + 1.9326. [8]

In Figure 2c we plot the sum, (ATh
p + ATh

m ), as a function of x in
Li2Sx (4 ≤ x ≤ 8). To a good approximation, (ATh

p + ATh
m ) is 6.61,

independent of x. The theoretical spectrum of Li2S contains a unique
peak at 2476 eV that is not present in any of the polysulfides. The area
under this peak, ATh

s , was calculated by approximating the theoretical
Li2S spectrum by a sum of Gaussian peaks as shown in Figure S3.
The value of ATh

s is 3.07.

Thus,

ATh
s

ATh
p + ATh

m

= 3.07

6.61
= 0.46. [9]

We use this to estimate the moles of Li2S. in our cell is determined by
estimating the area under the peak at 2476 eV, As.

Total sulfur signal.—The XAS cell was made with Li2S8 in the
cathode. Our use of Li2S8 facilitated dispersion of the sulfur species in
the cathode. Our main objective is to determine the state of the sulfur-
containing cathode as the cell is discharged. We used a relatively thin
cathode and adjusted the sulfur content in the cathode to ensure that all
of the sulfur-containing species in the cell could be detected by XAS.
The cell was prepared 48 hours before the XAS experiment, stored at
room temperature in an argon glove box, placed in the XAS sample
stage, heated to 90◦C for 1.5 h, charged at C/20 until the voltage
reached 3.0 V, and then discharged at C/20. Figure 3a shows all of
the raw XAS spectra during these experiments. The magnitude of the
high energy plateau attained between 2500 and 2575 eV is indicative
of the total amount of sulfur detected. We define I0 to be the average
value of the raw XAS signal between 2500 and 2575 eV obtained just
prior to discharge. We define In as the average value of the raw XAS
signal in the same energy range obtained during other scans. The time
dependence of the cell potential during these experiments is shown in
Figure 3b. The corresponding values of In/I0 versus time shows are
shown in Figure 3c.

If our cell was perfectly designed, then In/I0 would be independent
of time. In our case, In/I0 increased by about 12% during the heating
step, and increased by about another 16% during the charging step.
This is attributed to the dissolution of Li2S8 into the separator during
the heating and charging steps. Because the anode side faces the in-
coming X-ray source, the incident intensity on the sulfur-containing
species in the separator is higher than that on the sulfur-containing
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Figure 3. (a) All raw XAS spectra, (b) time dependence of volt-
age and (c) time dependence of In/I0 before and during cycling.

species in the cathode. Similarly, the fluorescence signal from the
sulfur-containing species in the separator is more efficiently detected
because the anode side also faces the detector. Thus, the diffusion
of sulfur-containing species into the separator is expected to increase
In/I0. During the discharge step, however, In/I0 remained approxi-
mately constant, varying between 1.05 and 0.95. The constancy of
In/I0 during discharge indicates that all (or nearly all) of the products
of sulfur reduction were detected by XAS experiment. We therefore
conclude that there is no further change in the concentration of poly-
sulfides in the separator during the discharge step.

Discharge products from spectra.—The raw spectra shown in
Figure 3a were normalized and corrected for self-absorption. All of
the normalized spectra exhibited a pre-edge peak around 2471 eV and
a main-edge peak around 2473 eV. This enables calculation of the
areas under the pre-edge, Ap, and main-edge peak, Am. These areas
can be used to determine the average polysulfide chain length in the
cell, xavg,cell (x for Li2Sx), using Equation 8. After the heating step,
xavg,cell equals 7.0. After the charging step, xavg,cell reached 8.1.

An ideal cell would be one wherein all of the Li2S8 remained in
the cathode during storage prior to the XAS experiment and during

the heating step. In other words, xavg,cell would equal 8.0 in the ideal
cell after the heating step. It is evident that our cell is not ideal as
xavg,cell is 7.0 at the end of the heating step. This departure from
ideality is attributed to the dissolution of Li2S8 into the separator,
subsequent reactions with the lithium metal anode, and shuttling of
the resulting shorter polysulfides back into the cathode. We posit that
during storage and the heating step, 0.29 moles of Li from the anode
per mole of Li2S8 is consumed to reduce the average chain length
from 8 to 7.0, as indicated in Equation 10.

Li2S8 + 0.29 Li → 8

7
Li2S7.0 [10]

The cell with xavg,cell = 7.0 was then charged at a C/20 rate. In an
ideal cell, all of the sulfur-containing species would be converted to S8

after charging. If this were true, xavg,cell would equal infinity after the
charging step. Instead we find that the average chain length increased
from 7.0 to 8.1 during the charging step. During the charging step,
1.02 moles of electrons were delivered to the anode per mole of S8 in
the cell (t = 1.27 h in Equation 7). If all of these electrons participated
in the oxidation of Li2S7.0, then xavg,cell at the end of charging step
would have been 14.2. The observed departure from ideality during
the charging step is attributed to the reduction of polysulfide species at
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Figure 4. (a) Normalized and self-absorption corrected in operando XAS spectra and (b) voltage profile and average polysulfide chain length during discharge.

the anode/separator interface instead of complete conversion into Li
metal. We conclude that these side reactions consume 0.73 moles of
electrons per mole of S8. The remainder participated in the oxidation
of Li2S7.0 and the concomitant reduction of Li+ to Li metal:

Li2S7.0 → 7.0

8.1
Li2S8.1 + 0.27 Li+ + 0.27 e−. [11]

Figure 4a shows the self-absorption-corrected normalized spectra
during discharge. Figure 4b shows the dependence of cell potential
versus capacity, Q, during discharge. The XAS spectra in Figure 4a
contain standard signatures of polysulfides: a main-edge peak with
area Am and a pre-edge peak with area Ap. Using methods described
above and Equation 8 we determined xavg,cell as a function of capacity,
and the results are shown in Figure 4c. (The spectra do not con-
tain signatures of polysulfide radicals that are sometimes observed in
Li-S cells.34,37,45) The relatively low discharge capacity, 503 mAh/g,
of our cell is due to non-idealities discussed above. During discharge,
xavg,cell decreased monotonically from 8.1 to 3.0. In the early stage of
discharge, Q < 100 mAh/g, xavg,cell decreases rapidly with increasing
Q. In the late stage of discharge, Q > 100 mAh/g, xavg,cell decreases
slowly with increasing Q.

The measured XAS spectrum at the end of discharge is shown in
Figure 5a. In addition to the pre-edge and main-edge peaks at 2471 eV
and 2473 eV, an additional peak is observed at 2476 eV. The three
dashed lines in Figure 5a correspond to the characteristic energies of
these peaks. As discussed above, the theoretical spectra in Figure 2a
show that the peak at 2476 eV is a unique signature of Li2S and it

arises due to the crystalline nature of this compound.44 In addition to
determining Ap and Am, we also determined As for each of the spectra
shown in Figure 4a. We define mLi2S as the moles of Li2S formed per
mole of polysulfides. In theory, mLi2S is given by

mLi2S = 1

0.46

(
As

Ap + Am

)
[12]

Where the constant 0.46 is based on analysis of the theoretical
spectra and Equation 7. Note that in this analysis, Li2S is not con-
sidered as a polysulfide. In Figure 5b, we plot As

Ap+Am
on the left axis

and mLi2S, on the right axis versus Q. The moles of Li2S formed is
low in the early stage of discharge, Q < 100 mAh/g, but increases
rapidly in the late stage of discharge, Q > 100mAh/g. Whether or
not Li2S forms in the early stage of discharge remains an interesting,
open question. We suspect that the values we have obtained are due to
limitations of our spectral fitting procedure. In our cell, mLi2S remains
small reaching a maximum value of 0.24 at the end of discharge. Note
that the theoretical spectrum of Li2S contains a feature at 2474 eV.
In principal, we should correct the measured values of Am to account
for the fact that some of the signal at the main-edge peak is due to
Li2S. This correction is small because mLi2S remains small in our
experiment.

Relating average discharge products to ne.—The dependence of
xavg,cell on ne during discharge is shown in the inset in Figure 6. We
have assumed that all of the electrons delivered to the cathode are

Figure 5. (a). Illustration of peaks with areas Ap, Am, and As for a discharged spectrum, and (b) ratio of 2476 eV peak, As, to sum of peak areas for pre-edge and
main-edge, Ap + Am, on the left axis and moles of Li2S formed per mole of polysulfides, mLi2S, on the right axis versus discharge capacity.
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Figure 6. Theoretical and experimental average chain length of sulfur-
containing species in the cathode, xavg,cell and in the cell xavg,cell, vs number
of electrons delivered per S8 molecule, ne.

consumed by the Li2S8 molecules; side-reactions such as the forma-
tion of the solid electrolyte interphase (SEI) are ignored. The curve
in the inset represents the theoretical predication, Equation 2. The
theoretical value of ne corresponds to a cathode that contains pure
S8 at the beginning of discharge (see Equation 1). In the experiments
however, our cathode to a good approximation contains Li2S8 at the
beginning of discharge. The data points in the inset in Figure 6 repre-
sent experimental values of xavg,cell and ne. xavg,cell was obtained from
measurements of Ap and Am using Equation 8. To account for the fact
that the discharge begins with Li2S8, we set ne to a value close to 2 at
the beginning of discharge and it is incremented based on Equation 7.
The actual value used was 1.97 to obtain a perfect match between the
experimental data and the theoretical prediction at the beginning of
discharge. It is evident that the decrease in the average chain length of
sulfur-containing species in the cell is in reasonable agreement with
Equation 2.

Our analysis above indicates that some of the Li2S8 molecules lo-
cated in the cathode when the cell was made diffuses into the separa-
tor and reacted with Li metal. This results in an average composition
of Li2S7.0 before charging. The polysulfides in the separator not in
contact with electronically conducting materials cannot participate in
charge or discharge reactions. Their presence also affects our ability
to detect the nature of the sulfur-containing species inside the cathode.
We posit that these effects are responsible for the deviations between
theory and experiment in the inset of Figure 6. We define xavg,cathode

as the average length of sulfur-containing species in the cathode. We
assume that the average length of the sulfur-containing species in the
separator is fixed at 7.0 during the discharge process. Our cell thus
contains two layers with different concentrations of sulfur. Given the
agreement seeing in the inset of Figure 6, we conclude that most of the
sulfur is in the cathode. Specifically, in our model, we assumed that
90% of the sulfur atoms are in the cathode and 10% of the sulfur atoms
are in the separator. This enables calculations of the transmission co-
efficients of the two layers of our cell based on the known absorption
coefficients of sulfur and the other elements in our cell. These calcu-
lations indicate that the transmission coefficient of the separator layer,
Tsep = 0.623, while that of the cathode layer, Tcathode = 0.398. The
distance between the two layers is set to 19 um based on the geometry
of our cell. (We assume for simplicity that all of the sulfur-containing
species are located in the middle of each layer.) The measured value
of xavg,cell reflects the length of sulfur-containing species in both the
cathode and separator (xavg,cathode, xavg,sep) with a weighting function
that depends on the sulfur content and the transmission coefficient of
each layer. This is quantified by Equation 13.

xavg,cathode Dcathode + xavg,sep Dsep = xavg, cell [13]

where Dcathode and Dsep reflect the weighting functions as shown in
Equations 14 and 15.

Dcathode = 0.9 Tcathode

0.9 Tcathode + 0.1 Tsep
= 0.852 [14]

Figure 7. Average polysulfide chain length inside the cathode, xavg,PS, on the
left axis, and molar ratio of Li2S to polysulfides, mLi2S, vs number of electrons
delivered per S8 molecule, ne.

Dsep = 0.1 Tsep

0.9 Tcathode + 0.1 Tsep
= 0.148 [15]

Since xavg,sep = 7.0, we can calculate xavg,cathode corresponding to
each value of xavg,cell. Figure 6 shows the dependence of xavg,cathode

versus ne. The agreement between theory and experiment reflects the
fact that the data are consistent with our assumption that 10% of
the sulfur atoms are lost in the separator and hence not available for
redox reductions. Our analysis indicates that xavg,cathode at the start of
discharge is 8.28 while xavg,cathode at the end of discharge is 2.28 (see
Figure 6).

The XAS peak at 2476 eV enables detection of Li2S. It is there-
fore helpful to distinguish between Li2S and other sulfur-containing
species, namely polysulfides (Li2Sx, 2 ≤ x ≤ 8). We define xavg,PS

as the average length of polysulfides. We calculate xavg,PS using the
following equation:

xavg,PS = (
1 + mLi2S

)
xavg,cathode − mLi2S. [16]

We arrive at this equation based on the sulfur mole balance in the
cathode. For each mole of polysulfides (Li2SXavg,PS ) in the cathode
we have mLi2S moles of Li2S, and together these compounds gives
(1 + mLi2S) moles of Li2SXavg,cathode .

The final result of our analysis of the XAS data is given in Figure 7
where xavg,PS and mLi2S are plotted as a function of ne.

It is not possible to identify a particular pathway that is consistent
with the data in Figure 7. We used the principal of parsimony to
interpret these data. In particular we used a model presented in the
introduction beginning with Equation 4 and ending with Equation 6.
We define C8, C4, C2, C1 to be the molar concentrations of Li2S8,
Li2S4, Li2S2, and Li2S, respectively, and assume that the reactions
are limited by the concentrations of the sulfur-containing species. We
expect this to be true at extremely low C rates. The simplest rate
expressions for Reactions 4 through 6 are given below:

dC8

dt
= −k1C8, [17]

dC4

dt
= 2 k1C8 − k2C4, [18]

dC2

dt
= 2 k2C4 − k3C2, [19]

dC1

dt
= 2 k3C2. [20]

Since electrons are consumed in all three reactions,

dne

dt
= −2 (k1C8 + k2C4 + k3C2) . [21]
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Figure 8. Comparing experimental measures and the predicted values of (a) xavg,cathode, (b) xavg,PS, (c) mLi2S, and (d) ne versus t, time in hours, using the
three-reaction model fitted with k1 = 0.368 h−1, k2 = 3/4 k1, and k3 = 1/6 k1.

The measured quantities, xavg,cathode, xavg,PS, and mLi2S, are related to
the molar concentrations of the sulfur-containing species:

xavg,cathode = 8 C8 + 4 C4 + 2 C2 + C1

C8 + C4 + C2 + C1
, [22]

xavg,PS = 8 C8 + 4 C4 + 2 C2

C8 + C4 + C2
, [23]

mLi2S = C1

C8 + C4 + C2
. [24]

Equations 17 through 24 were integrated numerically for specific
values of k1, k2, and k3., with initial conditions C8 = 1, C4 = C2 = C1

= 0. The solved C8, C4, C2, C1 at each t are used to predict xavg,cathode,
xavg,PS, mLi2S, and ne at each t. The symbols in Figure 8 show the
experimentally determined values of xavg,cathode, xavg,PS, mLi2S, and ne,
respectively, as a function of time, t. The experimental values of mLi2S

in Figure 8c were subtracted by a constant so that mLi2S at t = 0 is
zero. This subtraction is necessary as the spectral signal at any given
energy is not identically zero even if the species is absent due to factors
such as contributions from neighboring excitations and background
subtraction inaccuracies. The curves in Figure 8 show results of the
numerical integration for k1 = 0.368 h−1, k2 = 3/4 k1, and k3 =
1/6 k1. It is evident that the measurements are consistent with the
proposed model. Our analysis indicates that the rate of reduction of
sulfur-containing species decreases with decreasing chain length. To
our knowledge, these are the first estimates of reaction rate constants
for discharge reactions in the cathode of a Li-S cell.

Figure 9 plots the predicted concentrations of Li2S8, Li2S4, Li2S2,
and Li2S versus discharge capacity, based on our model, Equations 17–
21.

The results presented in Figures 8 and 9 represent the first step in
quantifying the rates of reactions that occur in a sulfur cathode. Our
simple discharge reaction models is also consistent with the reaction
mechanism proposed by Hagen et al.24 Most other studies suggest

Figure 9. Concentration profile of Li2S8, Li2S4, Li2S2, and Li2S predicted
by model.
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that the reduction of sulfur in the cathode during discharge is likely to
follow more complex schemes. For example, Barchasz et al.21 have
proposed the following reaction for the reduction of Li2S4:

3 Li2S4 + 2 Li+ + 2 e− → 4 Li2S3. [25]

Such reactions require concerted action on several reactant
molecules. In the example above, three Li2S4 molecules must react
with two Li+ and two e− to yield the stated product. In contrast, the
proposed reaction for Li2S4 (Equation 5) only involves one reactant
molecule. The additional complication with Equation 25 is the fact
that the reaction must involve many steps wherein the Li2S4 molecules
are cleaved and then recombine to give four Li2S3 molecules. For these
reasons, Equation 5 is more likely to proceed than Equation 25.

The reaction rates that we present are only applicable to the regime
0 ≤ Q ≤ 500 mAh/g (the discharge range covered by our experiments).
It is likely that these rates will change as Li2S becomes the dominant
species in the cathode. The shorter-chain polysulfides such as Li2S2

are insoluble46–48 and thus their concentration near reaction sites in the
cathode may be significantly different from the bulk concentration.
In addition to electrochemical reactions, polysulfides can interconvert
through chemical reactions. Sophisticated models that include trans-
port are needed to account for complications arising from polysulfide
dissolution and concomitant shuttling effects. Further work is needed
to explore the effects.

The subject of reaction mechanisms in sulfur cathode is of consid-
erable current interest.21,27,51–57,28,31,32,35,38,42,49,50 Our detection of Li2S
at the very early stage of discharge (as seen in Figure 8c) is consistent
with the findings of Waluś et al.,20,58 Cuisinier et al.,33 and Conder
et al.52 Similarly, the formation and subsequent consumption of Li2S4

up to 500 mAh/g of discharge in Figure 9 is similar to the findings
of Dominko et al.,36 Zhang et al.55 and Zheng et al.51 Our results in
Figure 9 also indicated a significant amount of Li2S2 inside the cath-
ode at a depth of discharge of 500 mAh/g, which is consistent with the
results of Kawase et al.54 Reaction mechanisms in the sulfur cathode
have also been studied using computational simulations by Burgos
et al.59 They found that a variety of radical and dianion species were
formed in their simulation cell. However, S8

2− dianions were formed
at the early stage of discharge, S4

2− dianions dominated the interme-
diate stage of discharge, and S4

2− dianions dominated the late stage
of discharge at low applied current density. Our experimental findings
and approach are consistent with these results.

Conclusions

In this work, we presented an operando XAS study of a solid-state
Li-S cell. The use of a block copolymer electrolyte enabled the con-
struction of an all solid-state Li-S cell that could readily be probed by
XAS. Li2S8 was used as the active material inside the cathode instead
of S8 to facilitate dispersion of the sulfur-containing species in the
electrode. The main objective of the operando XAS experiment was
to study the discharge process. By using a thin cathode with relatively
low sulfur content, we demonstrated that the XAS signal reflected all
of the sulfur-containing species located throughout the depth of the
cell. The average chain-length of sulfur-containing species, xavg,cell,
was determined from the ratio of the areas under the main-edge and
pre-edge XAS peaks located at 2473 and 2471 eV. The measured val-
ues of xavg,cell at a given depth of discharge was in excellent agreement
with predictions based on the number of electrons delivered to the cell
as measured by the potentiostat. In addition, the production of Li2S as
a function of depth of discharge was monitored by tracking the area
under a unique XAS peak located at 2476 eV. The XAS measurements
were used to estimate rate constants of discharge reactions presented
in the introduction (Equations 4–6 where we introduced rate constants
k1, k2 and k3). While the overall rate of reaction in the cathode is con-
trolled by the current density used to discharge the cell, the relative
rate constants, k2/k1 and k3/k1, depend on the electronic structures of
the polysulfides participating in the reactions. To our knowledge, this
work presents the first estimate of relative rate constants for discharge
reactions in Li-S cells.

It is well established that the rate at which Li-S cells can be charged
and discharged is compromised by dissolution of polysulfides and the
insulating nature of the reactants and products. In addition to these
factors, the relative reaction rates may present fundamental limitations
on the practical power density of Li-S batteries. The present study is
only a step toward understanding these limitations.
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